zbMATH — the first resource for mathematics

Distributed output regulation for linear multi-agent systems with unknown leaders. (English) Zbl 1274.93011
Summary: In this paper, the distributed output regulation problem of linear multi-agent systems with parametric-uncertain leaders is considered. The existing distributed output regulation results with exactly known leader systems is not applicable. To solve the leader-following with unknown parameters in the leader dynamics, a distributed control law based on an adaptive internal model is proposed and the convergence can be proved.

93A14 Decentralized systems
93C10 Nonlinear systems in control theory
Full Text: Link
[1] Francis, B. A., Wonham, W. M.: The internal model priciple of control theory. Automatica 12 (1976), 457-465. · Zbl 0344.93028 · doi:10.1016/0005-1098(76)90006-6
[2] Godsil, C., Royle, G. F.: Algebraic Graph Theory. Springer-Verlag, New York 2001. · Zbl 0968.05002
[3] Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42 (2006), 1177-1182. · Zbl 1117.93300 · doi:10.1016/j.automatica.2006.02.013 · arxiv:0705.0403
[4] Hong, Y., Gao, L., Cheng, D., Hu, J.: Lyapunov-based approach to multi-agent systems with switching jointly connected interaction. IEEE Trans. Automat. Control 52 (2007), 943-948. · Zbl 1366.93437 · doi:10.1109/TAC.2007.895860
[5] Hong, Y., Wang, X., Jiang, Z.: Distribued output regualtion of leader-follower multi-agent systems. Internat. J. Robust Nonlinear Control 23 (2003), 48-66. · Zbl 1263.93007 · doi:10.1002/rnc.1814
[6] Hu, J., Feng, G.: Distributed tracking control of leader-follower multi-agent systems under noisy measurement. Automatica 46 (2010), 1382-1387. · Zbl 1204.93011 · doi:10.1016/j.automatica.2010.05.020 · arxiv:1108.1855
[7] Huang, J., Chen, Z.: A general framework for tackling the output regulation problem. IEEE Trans. Automat. Control 49 (2004), 2203-2218. · Zbl 1365.93446 · doi:10.1109/TAC.2004.839236
[8] Isidori, A., Byrnes, C. I.: Output regulation of nonlinear systems. IEEE Trans. Automat. Control 35 (1990), 131-140. · Zbl 0989.93041 · doi:10.1007/BFb0110318
[9] Isidori, A.: Nonlinear Control Systems II. Springer-Verlag, New York 1999. · Zbl 0931.93005
[10] Khalil, H. K.: Nonlinear Systems. Second Edition. Macmillan, New York 1992. · Zbl 1194.93083 · doi:10.1016/j.automatica.2010.03.015
[11] Liu, L., Chen, Z., Huang, J.: Parameter convergence and minimal internal model with an adaptive output regulation problem. Automatica 45 (2009), 1206-1311. · Zbl 1162.93363 · doi:10.1016/j.automatica.2009.01.003
[12] Marino, R., Tomei, P.: Nonlinear Control Design: Geometric, Adaptive and Robust. Prentice-Hall, London 1995. · Zbl 0833.93003
[13] Marino, R., Tomei, P.: Output regulation for linear systems via adaptive internal model. IEEE Trans. Automat. Control 48 (2003), 2199-2202. · Zbl 1364.93714 · doi:10.1109/TAC.2003.820143
[14] Obreg√≥n-Pulido, G., Castillo-Toledo, B., Loukianov, A. G.: A structurally stable globally adaptive internal model regulator for MIMO linear systems. IEEE Trans. Automat. Control 56 (2011), 160-165. · Zbl 1368.93309 · doi:10.1109/TAC.2010.2090409
[15] Olfati, R., Fax, J. A., Murray, R. M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95 (2007), 215-223. · Zbl 1376.68138
[16] Su, Y., Huang, J.: Cooperative output regulation of linear multi-agent systems. IEEE Trans. Automat. Control 57 (2012), 1062-1066. · Zbl 1255.93014 · doi:10.1016/j.sysconle.2012.09.005
[17] Wang, X., Hong, Y., Huang, J., Jiang, Z.: A distributed control approach to a robust output regulation problem for multi-agent linear systems. IEEE Trans. Automat. Control 55 (2010), 2891-2895. · Zbl 1368.93577 · doi:10.1109/TAC.2010.2076250
[18] Wang, X., Han, F.: Robust coordination control of switching multi-agent systems via output regulation approach. Kybernetika 47 (2011), 755-772. · Zbl 1236.93010 · www.kybernetika.cz · eudml:196548
[19] Xu, D., Hong, Y.: Distributed output regulation of nonlinear multi-agent systems based on networked internal model. Proc. Chinese Contol Conference, Hefei 2012, pp. 6483-6488.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.