zbMATH — the first resource for mathematics

Linearization by completely generalized input-output injection. (English) Zbl 1274.93061
Summary: The problem addressed in this paper is the linearization of nonlinear systems by generalized input-output (I/O) injection. The I/O injection (called completely generalized I/O injection) depends on a finite number of time derivatives of input and output functions. The practical goal is the observer synthesis with linear error dynamics. The method is based on the I/O differential equation structure. Thus, the problem is solved as a realization one. A necessary and sufficient condition is proposed through a constructive algorithm and is based on the exterior differentiation.

93B18 Linearizations
93B15 Realizations from input-output data
Full Text: Link
[1] Bestle D., Zeitz M.: Canonical form observer design for nonlinear time varying systems. Internat. J. Control 38 (1983), 419-431 · Zbl 0521.93012 · doi:10.1080/00207178308933084
[2] Birk J., Zeitz M.: Extended Luenberger observers for nonlinear multivariable systems. Internat. J. Control 47 (1988), 1823-1836 · Zbl 0648.93022 · doi:10.1080/00207178808906138
[3] Chiasson J. N.: Nonlinear differential-geometric techniques for control of a series DC motor. IEEE Trans. Systems Technology 2 (1994), 35-42 · doi:10.1109/87.273108
[4] Diop S., Grizzle J. W., Moraal P. E., Stefanopoulou A.: Interpolation and numerical differentiation for observer design. Proc. of American Control Conference 94, Evanston 1994, pp. 1329-1333
[5] Fliess M.: Generalized controller canonical forms for linear and nonlinear dynamics. IEEE Trans. Automat. Control 35 (1990), 994-1001 · Zbl 0724.93010 · doi:10.1109/9.58527
[6] Glumineau A., Moog C. H., Plestan F.: New algebro-geometric conditions for the linearization by input-output injection. IEEE Trans. Automat. Control 41 (1996), 598-603 · Zbl 0851.93018 · doi:10.1109/9.489283
[7] Hammouri H., Gauthier J. P.: Bilinearization up to output injection. Systems Control Lett. 11 (1988), 139-149 · Zbl 0648.93024 · doi:10.1016/0167-6911(88)90088-6
[8] Keller H.: Nonlinear observer design by transformation into a generalized observer canonical form. Internat. J. Control 46 (1987), 1915-1930 · Zbl 0634.93012 · doi:10.1080/00207178708934024
[9] Krener A. J., Respondek W.: Nonlinear observers with linearizable error dynamics SIAM J. Control Optim. 23 (1985), 197-216 · Zbl 0569.93035 · doi:10.1137/0323016
[10] López-M. V., Glumineau A.: Further results on linearization of nonlinear systems by input output injection. Proc. of 36th IEEE Conference on Decision and Control, San Diego 1997
[11] Marino R.: Adaptive observers for single output nonlinear systems. IEEE Trans. Automat. Control 35 (1990), 1054-1058 · Zbl 0729.93016 · doi:10.1109/9.58536
[12] Marino R., Tomei P.: Dynamic output feedback linearization and global stabilization. Systems Control Lett. 17 (1991), 115-121 · Zbl 0747.93069 · doi:10.1016/0167-6911(91)90036-E
[13] Phelps A. R.: On constructing nonlinear observers. SIAM J. Control Optim. 29 (1991), 516-534 · Zbl 0738.93032 · doi:10.1137/0329030
[14] Plestan F., Cherki B.: An observer for one flexible robot by an algebraic method. IFAC Workshop on New Trends in Design of Control Systems NTDCS’94, Smolenice 1994, pp. 41-46
[15] Plestan F., Glumineau A.: Linearization by generalized input-output injection. Systems Control Lett. 31 (1997), 115-128 · Zbl 0901.93013 · doi:10.1016/S0167-6911(97)00025-X
[16] Proychev T. Ph., Mishkov R. L.: Transformation of nonlinear systems in observer canonical form with reduced dependency on derivatives of the input. Automatica 29 (1993), 495-498 · Zbl 0772.93017 · doi:10.1016/0005-1098(93)90145-J
[17] Williamson D.: Observation of bilinear systems with application to biological systems. Automatica 13 (1977), 243-254 · Zbl 0351.93008 · doi:10.1016/0005-1098(77)90051-6
[18] Xia X. H., Gao W. B.: Nonlinear observers design by dynamic error linearization. SIAM J. Control Optim. 27 (1989), 1, 199-216 · Zbl 0667.93014 · doi:10.1137/0327011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.