×

Robust observer design for time-delay systems: a Riccati equation approach. (English) Zbl 1274.93079

Summary: In this paper, a method for \(H_{\infty }\) observer design for linear systems with multiple delays in state and output variables is proposed. The designing method involves attenuating of the disturbance to a pre-specified level. The observer design requires solving certain algebraic Riccati equation. An example is given in order to illustrate the proposed method.

MSC:

93B36 \(H^\infty\)-control
93B07 Observability
93B51 Design techniques (robust design, computer-aided design, etc.)
PDFBibTeX XMLCite
Full Text: Link

References:

[1] Boyd S., Ghaoui L. EL, Feron E., Balakrishnan V.: Linear matrix inequalities in system and control theory. SIAM Stud. Appl. Math. 1994 · Zbl 0816.93004
[2] Choi H. H., Chung M. J.: Observer-based \(H_{\infty }\) controller design for state delayed linear systems. Automatica 32 (1996), 1073-1075 · Zbl 0850.93215 · doi:10.1016/0005-1098(96)00014-3
[3] Choi H. H., Chung M. J.: An LMI approach to \(H_{\infty }\) controller design for linear time-delay systems. Automatica 33 (1997), 737-739 · Zbl 0875.93104 · doi:10.1016/S0005-1098(96)00242-7
[4] Fattouh A., Sename O., Dion J.-M.: \(H_{\infty }\) Observer design for time-delay systems. Proc. of the 37th IEEE Conference on Decision and Control, Tampa 1998, pp. 4545-4546
[5] Fattouh A., Sename O., Dion J.-M.: \(\alpha \)-decay rate observer design for linear systems with delayed state. Proc. of the 8th European Control Conference, Karlsruhe 1999
[6] Furukawa T., Shimemura E.: Stabilizability conditions by memoryless feedback for linear systems with time-delay. Internat. J. Control. 37 (1983), 553-565 · Zbl 0503.93050 · doi:10.1080/00207178308932992
[7] Khargonekar P. P., Petersen I. R., Zhou K.: Robust stabilization of uncertain linear systems: Quadratic stabilizability and \(H_\infty \) control theory. IEEE Trans. Automat. Control 35 (1990), 356-361 · Zbl 0707.93060 · doi:10.1109/9.50357
[8] Kolmanovskii V. B., Nosov V. R.: Stability of Functional Differential Equation. Academic Press, New York 1986
[9] Lee E. B., Olbrot A.: Observability and related structural results for linear hereditary systems. Internat. J. Control. 34 (1981), 1061-1078 · Zbl 0531.93015 · doi:10.1080/00207178108922582
[10] Lee J. H., Kim S. W., Kwon W. H.: Memoryless \(H^{\infty }\) controllers for state delayed systems. IEEE Trans. Automat. Control 39 (1994), 159-162 · Zbl 0796.93026 · doi:10.1109/9.273356
[11] Niculescu S. I., Trofino-Neto A., Dion J.-M., Dugard L.: Delay-dependent stability of linear systems with delayed state: An L. M.I. approach. Proc. of the 34th Conference on Decision and Control, New Orleans 1995, pp. 1495-1496
[12] Pearson A. E., Fiagbedzi Y. A.: An observer for time lag systems. IEEE Trans. Automat. Control 34 (1989), 775-777 · Zbl 0687.93011 · doi:10.1109/9.29412
[13] Petersen I. R., Anderson B. D. O., Jonckheere E. A.: A first principles solution to the non-singular \(H^\infty \) control problem. Internat. J. Robust and Nonlinear Control 1 (1991), 171-185 · Zbl 0759.93027 · doi:10.1002/rnc.4590010304
[14] Ramos J. L., Pearson A. E.: An asymptotic modal observer for linear autonomous time lag systems. IEEE Trans. Automat. Control 40 (1995), 1291-1294 · Zbl 0825.93084 · doi:10.1109/9.400473
[15] Watanabe K.: Finite spectrum assignment and observer for multivariable systems with commensurate delays. IEEE Trans. Automat. Control 31 (1986), 543-550 · Zbl 0596.93009 · doi:10.1109/TAC.1986.1104336
[16] Watanabe K., Ouchi T.: An observer of systems with delays in state variables. Internat. J. Control 41 (1985), 217-229 · doi:10.1080/0020718508961121
[17] Yao Y. X., Zhang Y. M., Kovacevic R.: Parameterization of observers for time delay systems and its application in observer design. IEE Proc. Control Theory Appl. 143 (1996), 225-232 · Zbl 0852.93014 · doi:10.1049/ip-cta:19960306
[18] Zhou K., Doyle J. C., Glover K.: Robust and Optimal Control. Prentice-Hall, Englewood Cliffs, N. J. 1996 · Zbl 0999.49500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.