×

zbMATH — the first resource for mathematics

State observers for nonlinear systems with smooth/bounded input. (English) Zbl 1274.93118
Summary: It is known that for affine nonlinear systems the drift-observability property (i.e., observability for zero input) is not sufficient to guarantee the existence of an asymptotic observer for any input. Many authors studied structural conditions that ensure uniform observability of nonlinear systems (i.e., observability for any input). Conditions are available that define classes of systems that are uniformly observable. This work considers the problem of state observation with exponential error rate for smooth nonlinear systems that meet or not conditions of uniform observability. In previous works, the authors showed that drift-observability together with a smallness condition on the input is sufficient to ensure existence of an exponential observer. Here it is shown that drift-observability implies a kind of local uniform observability, that is observability for sufficiently small and smooth input. For locally uniformly observable systems two observers are presented: an exponential observer that uses derivatives of the input functions; an observer that does not use input derivatives and ensures exponential decay of the observation error below a prescribed level (high-gain observer) The construction of both observers is straightforward. Moreover the state observation is provided in the original coordinate system. Simulation results close the paper.

MSC:
93C10 Nonlinear systems in control theory
93B07 Observability
PDF BibTeX XML Cite
Full Text: Link
References:
[1] Besancon G., Hammouri H.: On uniform observation of nonuniformly observable systems. Systems Control Lett. 29 (1996), 9-19 · Zbl 0866.93013 · doi:10.1016/0167-6911(96)00043-6
[2] Ciccarella G., Mora M. Dalla, Germani A.: A Luenberger-like observer for nonlinear systems. Internat. J. Control 57 (1993), 3, 537-556 · Zbl 0772.93018 · doi:10.1080/00207179308934406
[3] Mora M. Dalla, Germani A., Manes C.: A state observer for nonlinear dynamical systems. Nonlinear Anal.: Theory, Methods Appl. 30 (1997), 7, 4485-4496 · Zbl 0890.93010 · doi:10.1016/S0362-546X(97)00184-3
[4] Mora M. Dalla, Germani A., Manes C.: Exponential Observer for Smooth Nonlinear Systems. Internal Report R. 96-11 of Dept. of Electrical Eng., Univ. of L’Aquila, 1996. Submitted for publication · Zbl 0890.93010
[5] Esfandiari F., Khalil H. K.: Output feedback stabilization of fully linearizable systems. Internat. J. Control 56 (1992), 5, 1007-1037 · Zbl 0762.93069 · doi:10.1080/00207179208934355
[6] Gauthier J. P., Bornard G.: Observability for any \(u(t)\) of a class of nonlinear systems. IEEE Trans. Automat. Control 26 (1981), 4, 922-926 · Zbl 0553.93014 · doi:10.1109/TAC.1981.1102743
[7] Gauthier J. P., Hammouri H., Othman S.: A simple observer for nonlinear systems: application to bioreactors. IEEE Trans. Automat. Control 37 (1992), 875-880 · Zbl 0775.93020 · doi:10.1109/9.256352
[8] Gauthier J. P., Kupka I.: Observability and observers for nonlinear systems. SIAM J. Control Optim. 32 (1994), 4, 975-994 · Zbl 0802.93008 · doi:10.1137/S0363012991221791
[9] Isidori A.: Nonlinear Control Systems. Springer-Verlag, Berlin 1989 · Zbl 0931.93005
[10] Khalil H. K., Esfandiari F.: Semiglobal stabilization of a class of nonlinear systems using output feedback. IEEE Trans. Automat. Control 38 (1993), 9, 1412-1415 · Zbl 0787.93079 · doi:10.1109/9.237658
[11] Krener A., Respondek W.: Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23 (1985) 197-216 · Zbl 0569.93035 · doi:10.1137/0323016
[12] Raghavan S., Hedrick J. K.: Observer design for a class of nonlinear systems. Internat. J. Control 59 (1994), 2, 515-528 · Zbl 0802.93007 · doi:10.1080/00207179408923090
[13] Teel A., Praly L.: Global stabilizability and observability imply semi-global stabilizability by output feedback. Systems Control Lett. 22 (1994), 313-325 · Zbl 0820.93054 · doi:10.1016/0167-6911(94)90029-9
[14] Thau F. E.: Observing the state of nonlinear dynamical systems. Internat. J. Control 17 (1973), 471-479 · Zbl 0249.93006 · doi:10.1080/00207177308932395
[15] Tornamb√® A.: High-gain observers for non-linear systems. Internat. J. Systems Sci. 23 (1992), 9, 1475-1489 · Zbl 0768.93013 · doi:10.1080/00207729208949400
[16] Tsinias J.: Observer design for nonlinear systems. Systems Control Lett. 13 (1989), 135-142 · Zbl 0684.93006 · doi:10.1016/0167-6911(89)90030-3
[17] Tsinias J.: Further results on the observer design problem. Systems Control Lett. 14 (1990), 411-418 · Zbl 0698.93004 · doi:10.1016/0167-6911(90)90092-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.