Continuous-time input-output decoupling for sampled-data systems. (English) Zbl 1274.93185

Summary: The problem of obtaining a continuous-time(i.e., ripple-free) input-output decoupled control system for a continuous-time linear time-invariant plant, by means of a purely discrete-time compensator, is stated and solved in the case of a unity feedback control system. Such a control system is hybrid, since the plant is continuous-time and the compensator is discrete-time. A necessary and sufficient condition for the existence of a solution of such a problem is given, which reduces the mentioned hybrid control problem to an equivalent purely continuous-time decoupling problem. A simple necessary and sufficient condition for the existence of a solution of such a continuous-time decoupling problem is given for square plants (with and without the additional requirement of the asymptotic stability of the over-all control system), together with a parameterization of all the decoupling controllers. Moreover, for square plants, it is shown that, whenever the hybrid control problem admits a solution, any solution of the corresponding decoupling problem for the discrete-time model of the given continuous-time system is also a solution of the hybrid control problem.


93C57 Sampled-data control/observation systems
93B52 Feedback control
93B17 Transformations
Full Text: Link


[1] Argoun M. B., Vegte J. van de: Output feedback decoupling in the frequency domain. Internat. J. Control 31 (1980), 4, 665-675 · Zbl 0439.93037 · doi:10.1080/00207178008961074
[2] Chen. C. T.: Linear System Theory and Design. Holt, Rinehart and Winston, New York 1984
[3] Descusse J., Lafay J. F., Malabre M.: Solution to Morgan’s problem. IEEE Trans. Automomat. Control AC-33 (1988), 8, 732-739 · Zbl 0656.93018 · doi:10.1109/9.1289
[4] Desoer C. A., Gündes A. N.: Decoupling linear multiinput multioutput plants by dynamic output feedback: an algebraic theory. IEEE Trans. Automat. Control AC-31 (1986), 8, 744-750 · Zbl 0603.93029 · doi:10.1109/TAC.1986.1104391
[5] Dickman A., Sivan R.: On the robustness of multivariable linear feedback systems. IEEE Trans. Automat. Control AC-30 (1985), 4, 401-404 · Zbl 0581.93019 · doi:10.1109/TAC.1985.1103964
[6] Falb P. L., Wolovich W. A.: Decoupling in the design and synthesis of multivariable control systems. IEEE Trans. Automat. Control AC-12 (1967), 6, 651-659 · doi:10.1109/TAC.1967.1098737
[7] Francis B. A., Georgiou T. T.: Stability theory for linear time-invariant plants with periodic digital controllers. IEEE Trans. Automat. Control AC-33 (1988), 9, 820-832 · Zbl 0651.93053 · doi:10.1109/9.1310
[8] Franklin G. F., Emami-Naeini A.: Design of ripple-free multivariable robust servomechanism. IEEE Trans. Automat. Control AC-31 (1986), 7, 661-664 · Zbl 0608.93052 · doi:10.1109/TAC.1986.1104361
[9] Grasselli O. M., Longhi S., Tornambè A., Valigi P.: Robust ripple-free regulation and tracking for parameter dependent sampled-data systems. IEEE Trans. Automat. Control AC-41 (1996), 7, 1031-1037 · Zbl 0875.93264 · doi:10.1109/9.508911
[10] Gündes A. N.: Parameterization of decoupling controllers in the unity-feedback system. IEEE Trans. Automat. Control AC-37 (1992), 10, 1572-1575 · Zbl 0770.93063 · doi:10.1109/9.256385
[11] Hautus M. L. J., Heymann M.: Linear feedback decoupling - transfer function analysis. IEEE Trans. Automat. Control AC-28 (1983), 8, 823-832 · Zbl 0523.93035 · doi:10.1109/TAC.1983.1103320
[12] Lin C. A.: Necessary and sufficient conditions for existence of decoupling controllers. IEEE Trans. Automat. Control AC-42 (1997), 8, 1157-1161 · Zbl 0890.93039 · doi:10.1109/9.618247
[13] Urikura S., Nagata A.: Ripple-free deadbeat control for sampled-data systems. IEEE Trans. Automat. Control AC-32 (1987), 474-482 · Zbl 0622.93046 · doi:10.1109/TAC.1987.1104641
[14] Wang Q. G.: Decoupling with internal stability for unity output feedback systems. Automatica 28 (1992), 411-415 · Zbl 0766.93044 · doi:10.1016/0005-1098(92)90128-3
[15] Wonham W. M., Morse A. S.: Decoupling and pole assignment in linear multivariable systems: a geometric approach. SIAM J. Control 8 (1970), 1-18 · Zbl 0206.16404 · doi:10.1137/0308001
[16] Yamamoto Y.: A function space approach to sampled data control systems and tracking problems. IEEE Trans. Automat. Control AC-39 (1994), 4, 703-713 · Zbl 0807.93038 · doi:10.1109/9.286247
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.