zbMATH — the first resource for mathematics

Robust exponential stability of a class of nonlinear systems. (English) Zbl 1274.93223
Summary: The paper addresses the problem of design of a robust controller for a class of nonlinear uncertain systems to guarantee the prescribed decay rate of exponential stability. The bounded deterministic uncertainties are considered for both a studied system and its input part. The proposed approach does not employ matching conditions.
93D09 Robust stability
93D20 Asymptotic stability in control theory
93B51 Design techniques (robust design, computer-aided design, etc.)
Full Text: Link
[1] Brogliato B., Neto A. T.: Practical stabilization of a class of nonlinear systems with partially known uncertainties. Automatica 31, (1995), 1, 145-150 · Zbl 0825.93650 · doi:10.1016/0005-1098(94)E0050-R
[2] Chua L. Q., Wu C. W., Huang A., Zhong G. Q.: A universal circuit for studying and generating chaos. Part 1. IEEE Trans. Circuits and Systems (1993), 10, 732-744 · Zbl 0844.58053 · doi:10.1109/81.246150
[3] Corles M.: Control of uncertain nonlinear systems. ASME J. Dyn. Syst. Meas. Control 115 (1993), 362-372 · Zbl 0775.93088 · doi:10.1115/1.2899076
[4] Dubrov A. M., Zuber I. E.: Design of exponentially stable control systems for a range of nonlinear processes. Automat. Remote Control (1989), 8, 33-40 · Zbl 0712.93021
[5] Fradkov A. L., Pogromsky A. Yu., Markov A. Yu.: Adaptive control of chaotic continuously-time systems. Proc. 3rd EC Conference, Roma 1995, pp. 3062-3067
[6] Gaiduk A. R.: Analytical controller design for a class of nonlinear systems. Automat. Remote Control (1993), 3, 22-33
[7] Gaiduk A. R.: Analytical nonlinear control systems design. Proc. 3rd EC Conference, Roma 1995, pp. 1503-1505
[8] Jury E. I.: Robustness of discrete systems: A review. Proc. 11th IFAC World Congres, Tallin 1990, pp. 184-186
[9] Konstantopoulos I. K., Antsaklis P. J.: New bounds for robust stability of continuous and discrete-time systems under parametric uncertainty. Kybernetika 31 (1995), 6, 623-636 · Zbl 0872.93065 · www.kybernetika.cz · eudml:28434
[10] Kozák Š.: Simple and robust PID controller. Appl. Math. Comput. 70 (1995), 2-8 · Zbl 0825.93209 · doi:10.1016/0096-3003(94)00119-O
[11] Kučera V., DeSouza C. E.: A necessary and sufficient conditions for output feedback stabilizability. Automatica 31 (1995), 1357-1359 · Zbl 0831.93056 · doi:10.1016/0005-1098(95)00048-2
[12] Leitman G.: One method for robust control of uncertain systems: Theory and practice. Kybernetika 32 (1996), 1, 43-62
[13] Niculescu S. I., DeSouza C. E., Dugard L., Dion J. M.: Robust exponential stability of uncertain systems with time-varying delays. Proc. 3rd EC Conference, Roma 1995, pp. 1802-1807
[14] Poolla K. S., Shamma J. S., Wise K. A.: Linear and nonlinear controller for robust stabilization problem: A survey. Proc. 11th IFAC World Congres, Tallin 1990, pp. 176-183
[15] Prokop P., Corriou J. P.: Design and analysis of simple robust controllers. Internat. J. Control 66 (1997), 6, 905-921 · Zbl 0875.93137 · doi:10.1080/002071797224450
[16] Gong, Zhiming, Wen, Changyun, Mital, Dinesh P.: Decentralized robust controller design for a class of interconnected uncertain systems: with known or unknown bound of uncertainty. Proc. 3rd EC Conference, Roma 1995, pp. 2940-2945 · Zbl 1034.93558 · doi:10.1109/9.506237
[17] Qu, Zhihua, Dorsey J.: Robust control by two Lyapunov functions. Internat J. Control 55 (1992), 1335-1350 · Zbl 0751.93019 · doi:10.1080/00207179208934288
[18] Qu, Zhihua: Asymptotic stability of controlling uncertain dynamical systems. Internat. J. Control 59 (1994), 1345-1355 · Zbl 0806.93044 · doi:10.1080/00207179408923134
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.