×

Hyperbolic relaxation of a fourth order evolution equation. (English) Zbl 1275.35046

Summary: We propose a hyperbolic relaxation of a fourth order evolution equation, with an inertial term \(\eta u_{tt}\), where \(\eta \in (0, 1]\). We prove the existence of several absorbing sets having different regularities and the existence of a global attractor that is bounded in \(H^4(I) \times \{H^2(I) \cap H^1_0(I)\}\).

MSC:

35B41 Attractors

References:

[1] Bellettini, G.; Fusco, G.; Guglielmi, N., A concept of solution and numerical experiments for forward-backward diffusion equations, Discrete and Continuous Dynamical Systems. Series A, 16, 4, 783-842 (2006) · Zbl 1105.35007 · doi:10.3934/dcds.2006.16.783
[2] Müller, S., Variational models for microstructure and phase transitions, Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996). Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), Lecture Notes in Mathematics, 1713, 85-210 (1999), Berlin, Germany: Springer, Berlin, Germany · Zbl 0968.74050 · doi:10.1007/BFb0092670
[3] Colucci, R.; Chacón, G. R., Asymptotic behavior of a fourth order evolution equation · Zbl 1284.35040
[4] Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68, xxii+648 (1997), New York, NY, USA: Springer, New York, NY, USA · Zbl 0871.35001
[5] Colucci, R.; Chacón, G. R., Dimension estimate for the global attractor of an evolution equation, Abstract and Applied Analysis, 2012 (2012) · Zbl 1234.35039 · doi:10.1155/2012/541426
[6] Constantin, P.; Foias, C.; Nicolaenko, B.; Temam, R., Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Applied Mathematical Sciences, 70, x+123 (1988), New York, NY, USA: Springer, New York, NY, USA · Zbl 0683.58002 · doi:10.1007/978-1-4612-3506-4
[7] Robinson, J. C., Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics, xviii+461 (2001), Cambridge, Mass, USA: Cambridge University Press, Cambridge, Mass, USA · Zbl 0980.35001 · doi:10.1007/978-94-010-0732-0
[8] Galenko, P., Phase field model with relaxation of the diffusion flux in non equilibrium solidification of a binary system, Physiscs Letters A, 287, 190-197 (2001)
[9] Gatti, S.; Grasselli, M.; Miranville, A.; Pata, V., On the hyperbolic relaxation of the one-dimensional Cahn-Hilliard equation, Journal of Mathematical Analysis and Applications, 312, 1, 230-247 (2005) · Zbl 1160.35518 · doi:10.1016/j.jmaa.2005.03.029
[10] Zheng, S.; Milani, A., Global attractors for singular perturbations of the Cahn-Hilliard equations, Journal of Differential Equations, 209, 1, 101-139 (2005) · Zbl 1063.35041 · doi:10.1016/j.jde.2004.08.026
[11] Segatti, A., On the hyperbolic relaxation of the Cahn-Hilliard equation in 3D: approximation and long time behaviour, Mathematical Models & Methods in Applied Sciences, 17, 3, 411-437 (2007) · Zbl 1131.35082 · doi:10.1142/S0218202507001978
[12] Grasselli, M.; Schimperna, G.; Segatti, A.; Zelik, S., On the 3D Cahn-Hilliard equation with inertial term, Journal of Evolution Equations, 9, 2, 371-404 (2009) · Zbl 1239.35160 · doi:10.1007/s00028-009-0017-7
[13] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations. Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, xiv+599 (2011), New York, NY, USA: Springer, New York, NY, USA · Zbl 1220.46002
[14] Hale, J. K., Asymptotic Behavior of Dissipative Systems. Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, 25, x+198 (1988), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 0642.58013
[15] Gatti, S.; Pata, V., A one-dimensional wave equation with nonlinear damping, Glasgow Mathematical Journal, 48, 3, 419-430 (2006) · Zbl 1110.35014 · doi:10.1017/S0017089506003156
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.