×

A uniqueness theorem for Bessel operator from interior spectral data. (English) Zbl 1275.47097

The singular Sturm-Liouville operator \(L\) is considered: \[ Ly = - y^{\prime \prime} + \left [ \frac{l(l+1)}{x^2} +q(x) \right ]y = \lambda y,\quad 0<x<1, \]
\[ y(0)=0, \quad y^{\prime}(1, \lambda) +Hy(1, \lambda), \] where the real valued function \(q(x) \in L_1(0,1)\), \(l \in \mathbb{N}_0\), \(H\in\mathbb{R}\). The operator \(L\) is self adjoint on \(L_2(0,1)\) and has a discrete spectrum \(\{\lambda\}\). The objective of this paper is to study the inverse problem of reconstructing the singular Sturm-Liouville operator on the basis of spectral data including the information on eigenfunctions at the internal point.

MSC:

47E05 General theory of ordinary differential operators
34B24 Sturm-Liouville theory
34A55 Inverse problems involving ordinary differential equations
34B30 Special ordinary differential equations (Mathieu, Hill, Bessel, etc.)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Borg, G., Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte, Acta Mathematica, 78, 1-96 (1946) · Zbl 0063.00523
[2] Ambarzumyan, V. A., Über eine frage der eigenwerttheorie, Zeitschrift Für Physik, 53, 690-695 (1929) · JFM 55.0868.01
[3] Levinson, N., The inverse Sturm-Liouville problem, Mathematica Tidsskrift B, 1949, 25-30 (1949) · Zbl 0045.36402
[4] Levitan, B. M., On the determination of the Sturm-Liouville operator from one and two spectra, Mathematics of the USSR-Izvestiya, 12, 179-193 (1978) · Zbl 0401.34022
[5] Hochstadt, H., The inverse Sturm-Liouville problem, Communications on Pure and Applied Mathematics, 26, 715-729 (1973) · Zbl 0281.34015
[6] Marchenko, V. A., Certain problems of the theory of one dimensional linear di \(¤\) erential operators of the second order, Trudy Moskovskogo Matematicheskogo Obshchestva, 1, 327-340 (1952)
[7] Carlson, R., A Borg-Levinson theorem for Bessel operators, Pacific Journal of Mathematics, 177, 1, 1-26 (1997) · Zbl 0868.34061
[8] Stashevskaya, V. V., On inverse problems of spectral analysis for a certain class of differential equations, Doklady Akademii Nauk SSSR, 93, 409-412 (1953)
[9] Albeverio, S.; Hryniv, R.; Mykytyuk, Ya., Inverse spectral problems for coupled oscillating systems: reconstruction from three spectra, Methods of Functional Analysis and Topology, 13, 2, 110-123 (2007) · Zbl 1150.34314
[10] Freiling, G.; Yurko, V., Inverse problems for differential operators with singular boundary conditions, Mathematische Nachrichten, 278, 12-13, 1561-1578 (2005) · Zbl 1090.34007
[11] Yurko, V. A., On the reconstruction of Sturm-Liouville differential operators with singularities inside the interval, Matematicheskie Zametki, 64, 1, 143-156 (1998) · Zbl 0922.34022
[12] Yurko, V. A., An inverse problem for differential equations with a singularity, Differentsial’nye Uravneniya, 28, 8, 1355-1362 (1992) · Zbl 0799.34015
[13] Yurko, V. A., On higher-order differential operators with a singular point, Inverse Problems, 9, 4, 495-502 (1993) · Zbl 0786.34027
[14] Gesztesy, F.; Simon, B., Inverse spectral analysis with partial information on the potential. II. The case of discrete spectrum, Transactions of the American Mathematical Society, 352, 6, 2765-2787 (2000) · Zbl 0948.34060
[15] Panakhov, E. S.; Sat, M., On the determination of the singular Sturm-Liouville operator from two spectra, CMES. Computer Modeling in Engineering & Sciences, 84, 1, 1-11 (2012) · Zbl 1356.34027
[16] Mochizuki, K.; Trooshin, I., Inverse problem for interior spectral data of the Sturm-Liouville operator, Journal of Inverse and Ill-Posed Problems, 9, 4, 425-433 (2001) · Zbl 1035.34008
[17] Yang, C.-F.; Yang, X.-P., An interior inverse problem for the Sturm-Liouville operator with discontinuous conditions, Applied Mathematics Letters, 22, 9, 1315-1319 (2009) · Zbl 1173.34306
[18] Watson, G. A., Treatise on the Theory of the Bessel Functions (1962), Cambridge, UK: Cambridge University Press, Cambridge, UK
[19] Koyunbakan, H., Inverse spectral problem for some singular differential operators, Tamsui Oxford Journal of Mathematical Sciences, 25, 3, 277-283 (2009) · Zbl 1202.34033
[20] Rundell, W.; Sacks, P. E., Reconstruction of a radially symmetric potential from two spectral sequences, Journal of Mathematical Analysis and Applications, 264, 2, 354-381 (2001) · Zbl 1011.35129
[21] Volk, V. Ya., On inversion formulas for a differential equation with a singularity at \(x = 0\), Uspekhi Matematicheskikh Nauk, 8, 4, 141-151 (1953) · Zbl 0053.24501
[22] Levin, B. Ja., Distribution of Zeros of Entire Functions, 5, viii+493 (1964), Providence, RI, USA: American Mathematical Society, Providence, RI, USA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.