Jung, Jong Soo Convergence of a viscosity iterative method for multivalued nonself-mappings in Banach spaces. (English) Zbl 1275.47124 Abstr. Appl. Anal. 2013, Article ID 369412, 7 p. (2013). Summary: Let \(E\) be a reflexive Banach space having a weakly sequentially continuous duality mapping \(J_\varphi\) with gauge function \(\varphi\), let \(C\) be a nonempty closed convex subset of \(E\), and let \(T : C \to \mathcal{K}(E)\) be a multivalued nonself-mapping such that \(P_T\) is nonexpansive, where \(P_T(x) = \{u_x \in Tx : ||x - u_x|| = d(x, Tx)\}\). Let \(f : C \to C\) be a contraction with constant \(k\). Suppose that, for each \(v \in C\) and \(t \in (0, 1)\), the contraction defined by \(S_tx = tP_Tx + (1 - t)v\) has a fixed point \(x_t \in C\). Let \(\{\alpha_n\}, \{\beta_n\}\) and \(\{\gamma_n\}\) be three sequences in \((0, 1)\) satisfying approximate conditions. Then, for arbitrary \(x_0 \in C\), the sequence \(\{x_n\}\) generated by \(x_n \in \alpha_nf(x_{n-1}) + \beta_nx_{n-1} + \gamma_nP_T(x_n)\) for all \(n \geq 1\) converges strongly to a fixed point of \(T\). Cited in 1 Document MSC: 47J25 Iterative procedures involving nonlinear operators 47H04 Set-valued operators 47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc. Keywords:viscosity iterative method multivalued nonself-mappings Banach space; strong convergence × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Nadler,, S. B., Multi-valued contraction mappings, Pacific Journal of Mathematics, 30, 475-488 (1969) · Zbl 0187.45002 · doi:10.2140/pjm.1969.30.475 [2] Moudafi, A., Viscosity approximation methods for fixed-points problems, Journal of Mathematical Analysis and Applications, 241, 1, 46-55 (2000) · Zbl 0957.47039 · doi:10.1006/jmaa.1999.6615 [3] Xu, H. K., Viscosity approximation methods for nonexpansive mappings, Journal of Mathematical Analysis and Applications, 298, 1, 279-291 (2004) · Zbl 1061.47060 · doi:10.1016/j.jmaa.2004.04.059 [4] Browder, F. E., Convergence of approximants to fixed points of nonexpansive non-linear mappings in Banach spaces, Archive for Rational Mechanics and Analysis, 24, 82-90 (1967) · Zbl 0148.13601 [5] Halpern, B., Fixed points of nonexpanding maps, Bulletin of the American Mathematical Society, 73, 957-961 (1967) · Zbl 0177.19101 · doi:10.1090/S0002-9904-1967-11864-0 [6] Jung, J. S.; Kim, S. S., Strong convergence theorems for nonexpansive nonself-mappings in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 33, 3, 321-329 (1998) · Zbl 0988.47033 · doi:10.1016/S0362-546X(97)00526-9 [7] Jung, J. S.; Kim, T. H., Strong convergence of approximating fixed points for nonexpansive nonself-mappings in Banach spaces, Kodai Mathematical Journal, 21, 3, 259-272 (1998) · Zbl 0928.47040 · doi:10.2996/kmj/1138043939 [8] Kim, G. E.; Takahashi, W., Strong convergence theorems for nonexpansive nonself-mappings in Banach spaces, Nihonkai Mathematical Journal, 7, 1, 63-72 (1996) · Zbl 0997.47512 [9] Reich, S., Strong convergence theorems for resolvents of accretive operators in Banach spaces, Journal of Mathematical Analysis and Applications, 75, 1, 287-292 (1980) · Zbl 0437.47047 · doi:10.1016/0022-247X(80)90323-6 [10] Singh, S. P.; Watson, B., On approximating fixed points, Proceedings of Symposia in Pure Mathematics, 45, 2, 393-395 (1988) · Zbl 0597.47035 [11] Takahashi, W.; Kim, G. E., Strong convergence of approximants to fixed points of nonexpansive nonself-mappings in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 32, 3, 447-454 (1998) · Zbl 0947.47049 · doi:10.1016/S0362-546X(97)00482-3 [12] Xu, H. K., Approximating curves of nonexpansive nonself-mappings in Banach spaces, Comptes Rendus de l’Académie des Sciences, Série I, 325, 2, 151-156 (1997) · Zbl 0888.47036 · doi:10.1016/S0764-4442(97)84590-9 [13] Xu, H. K.; Yin, X. M., Strong convergence theorems for nonexpansive non-self-mappings, Nonlinear Analysis: Theory, Methods & Applications, 24, 2, 223-228 (1995) · Zbl 0826.47038 · doi:10.1016/0362-546X(94)E0059-P [14] Jung, J. S., Strong convergence theorems for multivalued nonexpansive nonself-mappings in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 66, 11, 2345-2354 (2007) · Zbl 1123.47047 · doi:10.1016/j.na.2006.03.023 [15] Shahzad, N.; Zegeye, H., Strong convergence results for nonself multimaps in Banach spaces, Proceedings of the American Mathematical Society, 136, 2, 539-548 (2008) · Zbl 1135.47054 · doi:10.1090/S0002-9939-07-08884-3 [16] Lim, T. C., A fixed point theorem for weakly inward multivalued contractions, Journal of Mathematical Analysis and Applications, 247, 1, 323-327 (2000) · Zbl 0957.47040 · doi:10.1006/jmaa.2000.6866 [17] Kim, T. H.; Jung, J. S., Approximating fixed points of nonlinear mappings in Banach spaces, Proceedings of the Workshop on Fixed Point Theory (Kazimierz Dolny, 1997) · Zbl 1012.47034 [18] López Acedo, G.; Xu, H. K., Remarks on multivalued nonexpansive mappings, Soochow Journal of Mathematics, 21, 1, 107-115 (1995) · Zbl 0826.47037 [19] Sahu, D. R., Strong convergence theorems for nonexpansive type and non-self-multi-valued mappings, Nonlinear Analysis: Theory, Methods & Applications, 37, 3, 401-407 (1999) · Zbl 0938.47039 · doi:10.1016/S0362-546X(98)00056-X [20] Rafiq, A., On Mann iteration in Hilbert spaces, Nonlinear Analysis: Theory, Methods & Applications, 66, 10, 2230-2236 (2007) · Zbl 1136.47047 · doi:10.1016/j.na.2006.03.012 [21] Yao, Y.; Liou, Y. C.; Chen, R., Strong convergence of an iterative algorithm for pseudocontractive mapping in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 67, 12, 3311-3317 (2007) · Zbl 1129.47059 · doi:10.1016/j.na.2006.10.013 [22] Ceng, L. C.; Yao, J. C., Strong convergence of an iterative algorithm for nonself multimaps in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 71, 10, 4476-4485 (2009) · Zbl 1222.47092 · doi:10.1016/j.na.2009.03.007 [23] Alber, Y.; Reich, S.; Yao, J. C., Iterative methods for solving fixed-point problems with nonself-mappings in Banach spaces, Abstract and Applied Analysis, 2003, 4, 193-216 (2003) · Zbl 1028.47049 · doi:10.1155/S1085337503203018 [24] Ceng, L. C.; Petruşel, A.; Yao, J. C., Iterative approximation of fixed points for asymptotically strict pseudocontractive type mappings in the intermediate sense, Taiwanese Journal of Mathematics, 15, 2, 587-606 (2011) · Zbl 1437.47046 [25] Petruşel, A.; Yao, J. C., Viscosity approximation to common fixed points of families of nonexpansive mappings with generalized contractions mappings, Nonlinear Analysis: Theory, Methods & Applications, 69, 4, 1100-1111 (2008) · Zbl 1142.47329 · doi:10.1016/j.na.2007.06.016 [26] Takahashi, W.; Yao, J. C.; Kocourek, P., Weak and strong convergence theorems for generalized hybrid nonself-mappings in Hilbert spaces, Journal of Nonlinear and Convex Analysis, 11, 3, 567-586 (2010) · Zbl 1217.47128 [27] Goebel, K.; Reich, S., Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and Applied Mathematics, 83 (1984), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 0537.46001 [28] Cioranescu, I., Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Mathematics and Its Applications, 62 (1990), Dordrecht, The Netherlands: Kluwer Academic, Dordrecht, The Netherlands · Zbl 0712.47043 · doi:10.1007/978-94-009-2121-4 [29] Goebel, K.; Kirk, W. A., Topics in Metric Fixed Point Theory. Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, 28 (1990), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0708.47031 · doi:10.1017/CBO9780511526152 [30] Husain, T.; Latif, A., Fixed points of multivalued nonexpansive maps, Mathematica Japonica, 33, 3, 385-391 (1988) · Zbl 0667.47028 [31] Xu, H. K., On weakly nonexpansive and *-nonexpansive multivalued mappings, Mathematica Japonica, 36, 3, 441-445 (1991) · Zbl 0733.54010 [32] Xu, H. K., Multivalued nonexpansive mappings in Banach spaces, Nonlinear Analysis: Theory, Methods & Applications, 43, 6, 693-706 (2001) · Zbl 0988.47034 · doi:10.1016/S0362-546X(99)00227-8 [33] Xu, H. K., Metric fixed point theory for multivalued mappings, Dissertationes Mathematicae (Rozprawy Matematyczne), 389, 39 (2000) · Zbl 0972.47041 · doi:10.4064/dm389-0-1 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.