×

On the geometry of the movements of particles in a Hamilton space. (English) Zbl 1275.53017

Summary: We study the differential geometry of the Hamilton space including trajectories of the motion of particles exposed to gravitational fields and the cotangent bundle.

MSC:

53B05 Linear and affine connections
53B50 Applications of local differential geometry to the sciences
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Miron, R., The Geometry of Higher-Order Hamilton Spaces Applications to Hamiltonian Mechanics (2003), Dordrecht, The Netherlands: Kluwer Academic, Dordrecht, The Netherlands · Zbl 1044.53054
[2] Oproiu, V.; Papaghiuc, N., A pseudo-Riemannian structure on the cotangent bundle, Analele Ştiinţifice ale Universităţii Al. I. Cuza din Iaşi. Serie Nouă. Matematică, 36, 3, 265-276 (1990) · Zbl 0758.53036
[3] Willmore, T., Riemann extensions and affine differential geometry, Results in Mathematics, 13, 3-4, 403-408 (1988) · Zbl 0647.53008
[4] Yano, K.; Ishihara, S., Tangent and Cotangent Bundles (1973), New York, NY, USA: Marcel Dekker, New York, NY, USA · Zbl 0262.53024
[5] Akbulut, S.; Özdemir, M.; Salimov, A. A., Diagonal lift in the cotangent bundle and its applications, Turkish Journal of Mathematics, 25, 4, 491-502 (2001) · Zbl 1027.53015
[6] Oproiu, V., A pseudo-Riemannian structure in Lagrange geometry, Analele Ştiinţifice ale Universităţii Al. I. Cuza din Iaşi. Serie Nouă. Secţiunea I, 33, 3, 239-254 (1987) · Zbl 0649.53018
[7] Ayhan, I., Lifts from a Lagrange manifold to its contangent bundle, Algebras, Groups and Geometries, 27, 2, 229-246 (2010) · Zbl 1247.70033
[8] Ayhan, I., L-dual lifted tensor fields between the tangent and cotangent bundles of a Lagrange manifold, International Journal of Physical and Mathematical Sciences, 4, 1, 86-93 (2013)
[9] Polnarev, A., Relativity and Gravitation. Relativity and Gravitation, Lecture Notes, 5 (2010) · Zbl 1197.83002
[10] Miron, R.; Hrimiuc, H.; Shimada, H.; Sabau, V. S., The Geometry of Hamilton and Lagrange Spaces (2001), New York, NY, USA: Kluwer Academic, New York, NY, USA · Zbl 1001.53053
[11] Arnold, V. I., Mathematical Methods of Classical Mechanics (1989), Berlin, Germany: Springer, Berlin, Germany
[12] Abraham, R.; Marsden, J. E., Foundations of Mechanics (1967), New York, NY, USA: W. A. Benjamin, New York, NY, USA
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.