zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Role of $CD4^{+}$ T-cell proliferation in HIV infection under antiretroviral therapy. (English) Zbl 1275.92033
The authors study a mathematical model describing the interaction between HIV viruses and CD4+ T cells. Both RT and protease inhibitor treatments are incorporated in the model. They assume that the CD4+ T cells proliferate according to a saturation form which is different from the commonly used logistic proliferation form in the literature. Both local and global analyses are carried out. A backward bifurcation has been observed. The global stability of the unique infected equilibrium has been established by using a new criterion developed by M.Y. Li and J.S. Muldowney which has been successfully utilized by some researchers for some high dimensional systems.

92C50Medical applications of mathematical biology
92C60Medical epidemiology
34C60Qualitative investigation and simulation of models (ODE)
37N25Dynamical systems in biology
34C23Bifurcation (ODE)
Full Text: DOI
[1] Weiss, R. A.: How does HIV cause AIDS?, Science 260, 1273-1279 (1993)
[2] UNAIDS, 2010 report on the global AIDS epidemic.
[3] Gray, R. T.; Zhang, L.; Lupiwa, T.; Wilson, D. P.: Forecasting the population-level impact of reductions in HIV antiretroviral therapy in papua new guinea, AIDS res. Treatment 2011, 8 (2011)
[4] Magnus, C.; Regoes, R. R.: Restricted occupancy models for neutralization of HIV virions and populations, J. theoret. Biol. 283, 192-202 (2011)
[5] Wodarz, D.; Hamer, D. H.: Infection dynamics in HIV-specific CD4 T cells: does a CD4 T cell boost benefit the host or the virus?, Math. biosci. 209, 14-29 (2007) · Zbl 1120.92026 · doi:10.1016/j.mbs.2007.01.007
[6] Bonhoeffer, S.; Coffin, J. M.; Nowak, M. A.: Human immunodeficiency virus drug therapy and virus load, J. virol. 71, 3275-3278 (1997)
[7] Bonhoeffer, S.; May, R. M.; Shaw, G. M.; Nowak, M. A.: Virus dynamics and drug therapy, Proc. natl. Acad. sci. USA 94, 6971-6976 (1997)
[8] Nowak, M. A.; Bonhoeffer, S.; Shaw, G. M.; May, R. M.: Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations, J. theoret. Biol. 184, 203-217 (1997)
[9] Perelson, A. S.; Nelson, P. W.: Mathematical analysis of HIV-1 dynamics in vivo, SIAM rev. 41, 3-44 (1999) · Zbl 1078.92502 · doi:10.1137/S0036144598335107
[10] Perelson, A. S.; Neumann, A. U.; Markowitz, M.; Leonard, J. M.; Ho, D. D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science 271, 1582-1586 (1996)
[11] Kepler, T. B.; Perelson, A. S.: Drug concentration heterogeneity facilitates the evolution of drug resistance, Proc. natl. Acad. sci. USA 95, 11514-11519 (1998) · Zbl 0919.92023 · doi:10.1073/pnas.95.20.11514
[12] Nelson, P. W.; Mittler, J. E.; Perelson, A. S.: Effect of drug efficacy and the eclipse phase of the viral life cycle on the estimates of HIV viral dynamic parameters, Journal of aids 26, 405-412 (2001)
[13] Revilla, T.; García-Ramos, G.: Fighting a virus with a virus: a dynamic model for HIV-1 therapy, Math. biosci. 185, 191-203 (2003) · Zbl 1021.92015 · doi:10.1016/S0025-5564(03)00091-9
[14] Nowak, M. A.; May, R. M.: Virus dynamics, (2000) · Zbl 1101.92028
[15] De Leenheer, P.; Smith, H. L.: Virus dynamics: a global analysis, SIAM J. Appl. math. 63, 1313-1327 (2003) · Zbl 1035.34045 · doi:10.1137/S0036139902406905
[16] Dixit, N. M.; Perelson, A. S.: Complex patternsof viral load decay under antiretroviral therapy: influence of pharmacokineticsand intracellular delay, J. theoret. Biol. 226, 95-109 (2004)
[17] De Boer, R. J.; Perelson, A. S.: Target cell limited and immune control models of HIV infection: a comparison, J. theoret. Biol. 190, 201-214 (1998)
[18] Li, M. Y.; Shu, H.: Global dynamics of a mathematical model for HTLV-I infection of CD4+ T cells with delayed CTL response, Nonlinear anal. RWA 13, 1080-1092 (2012) · Zbl 1239.34086
[19] Nowak, M. A.; Bangham, C. R. M.: Population dynamics of immune responses to persistent viruses, Science 272, 74-79 (1996)
[20] Van Gulck, E.; Vlieghe, E.; Vekemans, M.; Van Tendeloo, V. F.; Van De Velde, A.; Smits, E.; Anguille, S.; Cools, N.; Goossens, H.; Mertens, L.; De Haes, W.; Wong, J.; Florence, E.; Vanham, G.; Berneman, Z. N.: MRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1- infected patients, Aids 26, F1-F12 (2012)
[21] Korobeinikov, A.: Global properties of basic virus dynamics models, Bull. math. Biol. 66, 879-883 (2004)
[22] Li, M. Y.; Shu, H.: Joint effects of mitosis and intracellular delay on viral dynamics: two-parameter bifurcation analysis, J. math. Biol. 64, 1005-1020 (2012) · Zbl 1303.92060
[23] Wang, L.; Li, M. Y.: Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells, Math. biosci. 200, 44-57 (2006) · Zbl 1086.92035 · doi:10.1016/j.mbs.2005.12.026
[24] Arino, J.; Mccluskey, C. C.; Den Driessche, P. Van: Global results for an epidemic model with vaccination that exhibits backward bifurcation, SIAM J. Appl. math. 64, 260-276 (2003) · Zbl 1034.92025 · doi:10.1137/S0036139902413829
[25] Dushoff, J.; Huang, W.; Castillo-Chavez, C.: Backwards bifurcations and catastrophe in simple models of fatal diseases, J. math. Biol. 36, 227-248 (1998) · Zbl 0917.92022 · doi:10.1007/s002850050099
[26] Gömez-Acevedo, H.; Li, M. Y.: Backward bifurcation in a model for HTLV-I infection of CD4+ T cells, Bull. math. Biol. 67, 101-114 (2005)
[27] Qesmi, R.; Wu, J.; Wu, J.; Heffernan, J. M.: Influence of backward bifurcation in a model of hepatitis B and C viruses, Math. biosci. 224, 118-125 (2010) · Zbl 1188.92017 · doi:10.1016/j.mbs.2010.01.002
[28] Sharomi, O.; Podder, C. N.; Gumel, A. B.; Elbasha, E. H.; Watmough, J.: Role of incidence function in vaccine-induced backward bifurcation in some HIV models, Math. biosci. 210, 436-463 (2007) · Zbl 1134.92026 · doi:10.1016/j.mbs.2007.05.012
[29] Den Driessche, P. Van; Watmough, J.: A simple SIS epidemic model with a backward bifurcation, J. math. Biol. 40, 525-540 (2000) · Zbl 0961.92029 · doi:10.1007/s002850000032
[30] Buonomo, B.; Varga-De-León, C.: Global stability for an HIV-1 infection model including an eclipse stage of infected cells, J. math. Anal. appl. 385, 709-720 (2012) · Zbl 1223.92024 · doi:10.1016/j.jmaa.2011.07.006
[31] Liu, S.; Wang, L.: Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy, Math. biosci. Eng. 7, 675-685 (2010) · Zbl 1260.92065
[32] Liu, X.; Wang, H.; Hu, Z.; Ma, W.: Global stability of an HIV pathogenesis model with cure rate, Nonlinear anal. RWA 12, 2947-2961 (2011) · Zbl 1231.34094 · doi:10.1016/j.nonrwa.2011.04.016
[33] Samanta, G. P.: Permanence and extinction of a nonautonomous HIV/AIDS epidemic model with distributed time delay, Nonlinear anal. RWA 12, 1163-1177 (2011) · Zbl 1203.92051 · doi:10.1016/j.nonrwa.2010.09.010
[34] Xu, R.: Global stability of an HIV-1 infection model with saturation infection and intracellular delay, J. math. Anal. appl. 375, 75-81 (2011) · Zbl 1222.34101 · doi:10.1016/j.jmaa.2010.08.055
[35] Février, M.; Dorgham, K.; Rebollo, A.: CD4+ T cell depletion in human immunodeficiency virus (HIV) infection: role of apoptosis, Viruses 3, 586-612 (2011)
[36] Kirschner, D.: Using mathematics to understand HIV immune dynamics, Notices amer. Math. soc. 43, 191-202 (1996) · Zbl 1044.92503
[37] Den Driessche, P. Van; Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. biosci. 180, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[38] Lasalle, J. P.: The stability of dynamical systems, Regional conference series in applied mathematics (1976) · Zbl 0364.93002
[39] Freedman, H. I.; Ruan, S. G.; Tang, M. X.: Uniform persistence and flows near a closed positively invariant set, J. dynam. Differential equations 6, 583-600 (1994) · Zbl 0811.34033 · doi:10.1007/BF02218848
[40] Li, M. Y.; Graef, J. R.; Wang, L.; Karsai, J.: Global dynamics of a SEIR model with a varying total population size, Math. biosci. 160, 191-213 (1999) · Zbl 0974.92029 · doi:10.1016/S0025-5564(99)00030-9
[41] Li, M. Y.; Muldowney, J. S.: A geometric approach to the global-stability problems, SIAM J. Math. anal. 27, 1070-1083 (1996) · Zbl 0873.34041 · doi:10.1137/S0036141094266449
[42] Li, Y.; Muldowney, J. S.: On Bendixson’s criterion, J. differential equations 106, 27-39 (1993) · Zbl 0786.34033 · doi:10.1006/jdeq.1993.1097
[43] Muldowney, J. S.: Compound matrices and ordinary differential equations, Rocky mountain J. Math. 20, 857-871 (1990) · Zbl 0725.34049 · doi:10.1216/rmjm/1181073047
[44] Coppel, W. A.: Stability and asymptotic behavior of differential equations, (1995) · Zbl 0838.52014
[45] Butler, G.; Waltman, P.: Persistence in dynamical systems, J. differential equations 63, 255-263 (1986) · Zbl 0603.58033 · doi:10.1016/0022-0396(86)90049-5
[46] Waltman, P.: A brief survey of persistence, Delay differential equations and dynamical systems (1991) · Zbl 0756.34054
[47] Jr., R. H. Martin: Logarithmic norms and projections applied to linear differential systems, J. math. Anal. appl. 45, 432-454 (1974) · Zbl 0293.34018 · doi:10.1016/0022-247X(74)90084-5
[48] Heffernan, J. M.; Wahl, L. M.: Monte Carlo estimates of natural variation in HIV infection, J. theoret. Biol. 236, 137-153 (2005)