## Friable Turan-Kubilius constants: a numerical study. (Constantes de Turán-Kubilius friables: une étude numérique.)(French. English summary)Zbl 1276.11152

Let $$S(x,y)$$ be the set of positive integers not exceeding $$x$$ that are $$y$$-friable, i.e. that have no prime factors exceeding $$y$$. Let $$\Psi(x,y)=\# S(x,y)$$, and $$\alpha=\alpha(x,y)$$ be the unique solution of the equation $\sum\limits_{p\leq y}\frac{\log p}{p^\alpha -1}=\log x.$ For this $$\alpha$$ and for an additive complex-valued arithmetic function $$f$$ we can construct a sequence of independent random variables $$\xi_p$$, $$p$$-prime, distributed according to the laws $\mathbb{P}(\xi_p=f(p^k))=\frac{1}{p^{k\alpha}}\left(1-\frac{1}{p^\alpha}\right),\;k=0,1,2,\ldots\,.$ Let, finally, $Z=Z_{f,x,y}=\sum\limits_{p\leq y}\xi_p\;\;\text{and}\;\;V_f(x,y)=\frac{1}{\Psi(x,y)}\sum\limits_{n\in S(x,y)}|f(n)-\mathbb{E}(Z)|^2.$ In [R. de la Bretèche and G. Tenenbaum, Invent. Math. 159, 531–588 (2005; Zbl 1182.11045)], it is proven that quantity $C(x,y):=\sup\limits_{f\neq 0}\frac{V_f(x,y)}{\mathbb{V}(Z)}$ is finite when $$c \log x\leq y\leq x$$ with an arbitrary positive constant $$c$$.
In this paper, the authors present a numerical study of the function $C(u)=\limsup\limits_{x\rightarrow\infty}C(x,x^{1/u}), \quad u\geq 1,$ and some others quantities related to the friable Turán-Kubilius constants.

### MSC:

 11N25 Distribution of integers with specified multiplicative constraints 11N37 Asymptotic results on arithmetic functions 11-04 Software, source code, etc. for problems pertaining to number theory 47-04 Software, source code, etc. for problems pertaining to operator theory 47B38 Linear operators on function spaces (general)

### Citations:

Zbl 1182.11045; Zbl 1214.11109

MPFR
Full Text:

### References:

 [1] DOI: 10.1515/crll.1982.335.180 · Zbl 0483.10050 [2] DOI: 10.1007/s00222-004-0379-y · Zbl 1182.11045 [3] DOI: 10.1016/j.tcs.2005.09.062 · Zbl 1086.65046 [4] Elliott P. D. T. A., Probabilistic Number Theory: Mean Value Theorems (1979) · Zbl 0431.10029 [5] Elliott P. D. T. A., Probabilistic Number Theory: Central Limit Theorems (1980) · Zbl 0431.10030 [6] DOI: 10.4064/aa107-2-1 · Zbl 1026.11041 [7] DOI: 10.1145/1236463.1236468 · Zbl 1365.65302 [8] DOI: 10.1112/plms/s3-72.3.481 · Zbl 0858.11049 [9] DOI: 10.1109/JPROC.2004.840301 [10] DOI: 10.1007/BF01214818 · Zbl 0493.10049 [11] DOI: 10.1016/0022-314X(86)90013-2 · Zbl 0575.10038 [12] DOI: 10.1090/S0002-9947-1986-0837811-1 [13] Kubilius J., Uspehi Mat. Nauk 11 pp 31– (1956) [14] Kubilius J., Probabilistic Methods in the Theory of Numbers, Translations of Mathematical Monographs 11 (1964) · Zbl 0133.30203 [15] DOI: 10.1515/CRELLE.2010.077 · Zbl 1214.11109 [16] Tenenbaum, G. –Crible d’Ératosthène et modèle de Kubilius.”. Dans Number Theory in Progress, Proceedings of the Conference in Honor of Andrzej Schinzel. 1997, Zakopane, Poland. Edited by: Gyory, K., Iwaniec, H. and Urbanowicz, J. pp.1099–1129. Berlin: Walter de Gruyter. [Tenenbaum 99] édité par · Zbl 0936.11052 [17] Tenenbaum G., Introduction à la théorie analytique et probabiliste des nombres, troisième édition, Collection Échelles (2008) [18] Riesz F., Leçons d’analyse fonctionnelle (1955) [19] DOI: 10.1006/jnth.1993.1009 · Zbl 0772.11035 [20] Xuan T. Z., Acta Arith. 65 pp 329– (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.