×

Inverse Littlewood-Offord problems and the singularity of random symmetric matrices. (English) Zbl 1276.15019

Let \(M_n\) denote a random symmetric (\(n\times n\))-matrix whose upper diagonal entries are independent and identically distributed Bernoulli random variables (which take values \(-1\) and \(1\) with probability \(1\over 2\)). Improving the earlier result by K. P. Costello, T. Tao and V. Vu [Duke Math. J. 135, No. 2, 395–413 (2006; Zbl 1110.15020)], the author shows that \(M_n\) is nonsingular with probability \(1-O(n^{-C})\) for any positive constant \(C\). The proof uses an inverse Littlewood-Offord result for quadratic forms, which is of interest of its own.

MSC:

15B52 Random matrices (algebraic aspects)
11B30 Arithmetic combinatorics; higher degree uniformity
11M50 Relations with random matrices
60B20 Random matrices (probabilistic aspects)
15A63 Quadratic and bilinear forms, inner products

Citations:

Zbl 1110.15020

References:

[1] B. Bollobás, Random Graphs , Academic Press, London, 1985.
[2] J. Bourgain, V. Vu, and P. M. Wood, On the singularity probability of discrete random matrices , J. Funct. Anal. 258 (2010), 559-603. · Zbl 1186.60003 · doi:10.1016/j.jfa.2009.04.016
[3] K. Costello, Bilinear and quadratic variants on the Littlewood-Offord problem , preprint, [math.PR] 0902.1538v1 · Zbl 1317.60051
[4] K. Costello, T. Tao, and V. Vu, Random symmetric matrices are almost surely nonsingular , Duke Math. J. 135 (2006), 395-413. · Zbl 1110.15020 · doi:10.1215/S0012-7094-06-13527-5
[5] P. Erdős, On a lemma of Littlewood and Offord , Bull. Amer. Math. Soc. 51 (1945), 898-902. · Zbl 0063.01270 · doi:10.1090/S0002-9904-1945-08454-7
[6] P. Erdős and L. Moser, Elementary problems and solutions: Solutions, E736 , Amer. Math. Monthly 54 (1947), 229-230. · doi:10.2307/2304711
[7] C. G. Esseen, On the Kolmogorov-Rogozin inequality for the concentration function , Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 5 (1966), 210-216. · Zbl 0142.14702 · doi:10.1007/BF00533057
[8] G. Halász, Estimates for the concentration function of combinatorial number theory and probability , Period. Math. Hungar. 8 (1977), 197-211. · Zbl 0336.10050 · doi:10.1007/BF02018403
[9] J. Kahn, J. Komlós, and E. Szemerédi, On the probability that a random \pm 1 matrix is singular , J. Amer. Math. Soc. 8 (1995), 223-240. · Zbl 0829.15018 · doi:10.2307/2152887
[10] M. Kanter, Probability inequalities for convex sets and multidimensional concentration functions , J. Multivariate Anal. 6 (1976), 222-236. · Zbl 0347.60043 · doi:10.1016/0047-259X(76)90032-4
[11] G. Katona, On a conjecture of Erdős and a stronger form of Sperner’s theorem , Studia Sci. Math. Hungar. 1 (1966), 59-63. · Zbl 0143.02403
[12] D. Kleitman, On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors , Adv. Math. 5 (1970), 155-157. · Zbl 0195.40703 · doi:10.1016/0001-8708(70)90038-1
[13] A. Kolmogorov, Two uniform limit theorems for sums of independent random variables , Theory Probab. Appl. 1 (1956), 384-394. · Zbl 0079.34502 · doi:10.1137/1101030
[14] J. Komlós, On the determinant of (0, 1) matrices , Studia Sci. Math. Hungar. 2 (1967), 7-22.
[15] J. E. Littlewood and A. C. Offord, On the number of real roots of a random algebraic equation, III , Rec. Math. [Mat. Sbornik] N.S. 12 (1943), 277-286. · Zbl 0061.01801
[16] H. Nguyen and V. Vu, Optimal Littlewood-Offord theorems , Adv. Math. 226 (2011), 5298-5319. · Zbl 1268.11020 · doi:10.1016/j.aim.2011.01.005
[17] A. Odlyzko, On subspaces spanned by random selections of \pm 1 vectors , J. Combin. Theory Ser. A 47 (1988), 124-133. · Zbl 0664.05004 · doi:10.1016/0097-3165(88)90046-5
[18] B. A. Rogozin, An estimate for concentration functions , Theory Probab. Appl. 6 (1961), 94-97. · Zbl 0106.34002 · doi:10.1137/1106009
[19] J. Rosiński and G. Samorodnitsky, Symmetrization and concentration inequality for multilinear forms with applications to zero-one laws for Lévy chaos , Ann. Probab. 24 (1996), 422-437. · Zbl 0854.60017 · doi:10.1214/aop/1042644724
[20] A. Sárközy and E. Szemerédi, Über ein Problem von Erdős und Moser , Acta Arith. 11 (1965), 205-208. · Zbl 0134.27801
[21] R. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property , SIAM J. Algebraic Discrete Methods 1 (1980), 168-184. · Zbl 0502.05004 · doi:10.1137/0601021
[22] T. Tao and V. Vu, Additive Combinatorics , Cambridge Stud. Adv. Math. 105 , Cambridge Univ. Press, Cambridge, 2006. · Zbl 1127.11002
[23] T. Tao and V. Vu, On the singularity probability of random Bernoulli matrices , J. Amer. Math. Soc. 20 (2007), 603-628. · Zbl 1116.15021 · doi:10.1090/S0894-0347-07-00555-3
[24] T. Tao and V. Vu, Inverse Littlewood-Offord theorems and the condition number of random matrices , Ann. of Math. (2) 169 (2009), 595-632. · Zbl 1250.60023 · doi:10.4007/annals.2009.169.595
[25] T. Tao and V. Vu, A sharp inverse Littlewood-Offord theorem , Random Structures Algorithms 37 (2010), 525-539. · Zbl 1205.60091
[26] V. Vu, “Random discrete matrices” in Horizons of Combinatorics , Bolyai Soc. Math. Stud. 17 , Springer, Berlin, 2008, 257-280. · Zbl 1154.15024 · doi:10.1007/978-3-540-77200-2_13
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.