×

On certain inequalities for Neuman-Sándor mean. (English) Zbl 1276.26060

Summary: We present several new sharp bounds for Neuman-Sándor mean in terms of arithmetic, centroidal, quadratic, harmonic root square, and contraharmonic means.

MSC:

26E60 Means

References:

[1] Neuman, E.; Sándor, J., On the Schwab-Borchardt mean, Mathematica Pannonica, 14, 2, 253-266 (2003) · Zbl 1053.26015
[2] Neuman, E.; Sándor, J., On the Schwab-Borchardt mean. II, Mathematica Pannonica, 17, 1, 49-59 (2006) · Zbl 1100.26011
[3] Li, Y.-M.; Long, B.-Y.; Chu, Y.-M., Sharp bounds for the Neuman-Sádor mean in terms of generalized logarithmic mean, Journal of Mathematical Inequalities, 6, 4, 567-577 (2012) · Zbl 1257.26031
[4] Neuman, E., A note on a certain bivariate mean, Journal of Mathematical Inequalities, 6, 4, 637-643 (2012) · Zbl 1257.26013
[5] Chu, Y.-M.; Long, B.-Y.; Gong, W.-M.; Song, Y.-Q., Sharp bounds for Seiffert and Neuman-Sándor means in terms of generalized logarithmic means, Journal of Inequalities and Applications, 2013 (2013) · Zbl 1282.26046 · doi:10.1186/1029-242X-2013-10
[6] Chu, Y.-M.; Long, B.-Y., Bounds of the Neuman-Sándor mean using power and identric means, Abstract and Applied Analysis, 2013 (2013) · Zbl 1264.26038 · doi:10.1155/2013/832591
[7] Zhao, T.-H.; Chu, Y.-M.; Liu, B.-Y., Optimal bounds for Neuman-Sándor mean in terms of the convex combinations of harmonic, geometric, quadratic, and contraharmonic means, Abstract and Applied Analysis (2012) · Zbl 1256.26018 · doi:10.1155/2012/302635
[8] Zhao, T.-H.; Chu, Y.-M.; Jiang, Y.-L.; Li, Y.-M., Best possible bounds for Neuman-Sándor mean by the identric, quadratic and contraharmonic means, Abstract and Applied Analysis, 2013 (2013) · Zbl 1276.26065 · doi:10.1155/2013/348326
[9] He, Z.-Y.; Qian, W.-M.; Jiang, Y.-L.; Song, Y.-Q.; Chu, Y.-M., Bounds for the combinations of Neuman-Sándor, arithmetic and second Seiffer means in terms of contraharmonic mean, Abstract and Applied Analysis, 2013 (2013) · Zbl 1272.26030 · doi:10.1155/2013/903982
[10] Anderson, G. D.; Vamanamurthy, M. K.; Vuorinen, M. K., Conformal Invariants, Inequalities, and Quasiconformal Maps. Conformal Invariants, Inequalities, and Quasiconformal Maps, Canadian Mathematical Society Series of Monographs and Advanced Texts, xxviii+505 (1997), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 0885.30012
[11] Simić, S.; Vuorinen, M., Landen inequalities for zero-balanced hypergeometric functions, Abstract and Applied Analysis, 2012 (2012) · Zbl 1241.26021 · doi:10.1155/2012/932061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.