×

A new method based on the RKHSM for solving systems of nonlinear IDDes with proportional delays. (English) Zbl 1276.34062

Summary: An efficient computational method is given for the solution of systems of nonlinear infinite-delay-differential equations (IDDEs) with proportional delays. A representation of the solution and an iterative method are established in the reproducing kernel space. Some examples are presented to demonstrate the computational efficiency of the method.

MSC:

34K28 Numerical approximation of solutions of functional-differential equations (MSC2010)
34A45 Theoretical approximation of solutions to ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Cooke, K. L.; Hale, J.; LaSalle, J., Functional-differential equations: some models and perturbation problems, International Symposium on Differential Equations and Dynamical Systems, Held in Puerto Rico, 167-183 (1967), New York, NY, USA: Academic Press, New York, NY, USA · Zbl 0189.40301
[2] Fečkan, E., On certain type of functional differential equations, Mathematica Slovaca, 43, 1, 39-43 (1994) · Zbl 0789.34036
[3] Grimm, L. J., Existence and continuous dependence for a class of nonlinear neutral-differential equations, Proceedings of the American Mathematical Society, 29, 3, 467-473 (1971) · Zbl 0222.34061
[4] Driver, R. D., A two-body problem of classical electrodynamics: the one-dimensional case, Annals of Physics, 21, 1, 122-142 (1963) · Zbl 0108.40705 · doi:10.1016/0003-4916(63)90227-6
[5] Oberg, R. J., On the local existence of solutions of certain functional-differential equations, Proceedings of the American Mathematical Society, 20, 295-302 (1969) · Zbl 0182.12602 · doi:10.1090/S0002-9939-1969-0234094-6
[6] Jackiewicz, Z., Existence and uniqueness of solutions of neutral delay-differential equations with state dependent delays, Funkcialaj Ekvacioj, 30, 1, 9-17 (1987) · Zbl 0631.34006
[7] Si, J. G.; Wang, X. P., Analytic solutions of a second-order iterative functional differential equation, Computers & Mathematics with Applications, 43, 1-2, 81-90 (2002) · Zbl 1008.34059 · doi:10.1016/S0898-1221(01)00273-5
[8] Nussbaum, R. D., Existence and uniqueness theorems for some functional differential equations of neutral type, Journal of Differential Equations, 11, 3, 607-623 (1972) · Zbl 0263.34070 · doi:10.1016/0022-0396(72)90070-8
[9] Kuang, Y.; Feldstein, A., Monotonic and oscillatory solutions of a linear neutral delay equation with infinite lag, SIAM Journal on Mathematical Analysis, 21, 6, 1633-1641 (1990) · Zbl 0719.34134 · doi:10.1137/0521089
[10] Iserles, A.; Liu, Y., On functional-differential equations with proportional delays, DAMTP, 1993/NA3 (1993), Cambridge University
[11] Liu, Y. K., Stability analysis of \(\theta \)-methods for neutral functional-differential equations, Numerische Mathematik, 70, 4, 473-485 (1995) · Zbl 0824.65081 · doi:10.1007/s002110050129
[12] Ishiwata, E.; Muroya, Y., Rational approximation method for delay differential equations with proportional delay, Applied Mathematics and Computation, 187, 2, 741-747 (2007) · Zbl 1117.65105 · doi:10.1016/j.amc.2006.08.086
[13] Ishiwata, E.; Muroya, Y.; Brunner, H., A super-attainable order in collocation methods for differential equations with proportional delay, Applied Mathematics and Computation, 198, 1, 227-236 (2008) · Zbl 1137.65047 · doi:10.1016/j.amc.2007.08.078
[14] Hu, P.; Huang, C.; Wu, S., Asymptotic stability of linear multistep methods for nonlinear neutral delay differential equations, Applied Mathematics and Computation, 211, 1, 95-101 (2009) · Zbl 1400.65035 · doi:10.1016/j.amc.2009.01.028
[15] Wang, W.; Zhang, Y.; Li, S., Stability of continuous Runge-Kutta-type methods for nonlinear neutral delay-differential equations, Applied Mathematical Modelling, 33, 8, 3319-3329 (2009) · Zbl 1205.65214 · doi:10.1016/j.apm.2008.10.038
[16] Wang, W. S.; Li, S. F., On the one-leg \(\theta \)-methods for solving nonlinear neutral functional differential equations, Applied Mathematics and Computation, 193, 1, 285-301 (2007) · Zbl 1193.34156 · doi:10.1016/j.amc.2007.03.064
[17] Wang, W.; Qin, T.; Li, S., Stability of one-leg \(\theta \)-methods for nonlinear neutral differential equations with proportional delay, Applied Mathematics and Computation, 213, 1, 177-183 (2009) · Zbl 1172.65044 · doi:10.1016/j.amc.2009.03.010
[18] Chen, X.; Wang, L., The variational iteration method for solving a neutral functional-differential equation with proportional delays, Computers & Mathematics with Applications, 59, 8, 2696-2702 (2010) · Zbl 1193.65145 · doi:10.1016/j.camwa.2010.01.037
[19] Biazar, J.; Ghanbari, B., The homotopy perturbation method for solving neutral functional differential equations with proportional delays, Journal of King Saud University, 24, 1, 33-37 (2012) · doi:10.1016/j.jksus.2010.07.026
[20] De la Sen, M., Stability of impulsive time-varying systems and compactness of the operators mapping the input space into the state and output spaces, Journal of Mathematical Analysis and Applications, 321, 2, 621-650 (2006) · Zbl 1111.93072 · doi:10.1016/j.jmaa.2005.08.038
[21] De la Sen, M.; Agarwal, R. P.; Ibeas, A.; Alonso-Quesada, S., On a generalized time-varying SEIR epidemic model with mixed point and distributed time-varying delays and combined regular and impulsive vaccination controls, Advances in Difference Equations, 2010 (2010) · Zbl 1219.34104 · doi:10.1155/2010/281612
[22] Fridman, E.; Orlov, Y., Exponential stability of linear distributed parameter systems with time-varying delays, Automatica, 45, 1, 194-201 (2009) · Zbl 1154.93404 · doi:10.1016/j.automatica.2008.06.006
[23] Lü, X.; Cui, M., Analytic solutions to a class of nonlinear infinite-delay-differential equations, Journal of Mathematical Analysis and Applications, 343, 2, 724-732 (2008) · Zbl 1160.34059 · doi:10.1016/j.jmaa.2008.01.101
[24] Zhang, C.; Sun, G., Nonlinear stability of Runge-Kutta methods applied to infinite-delay-differential equations, Mathematical and Computer Modelling, 39, 4-5, 495-503 (2004) · Zbl 1068.65106 · doi:10.1016/S0895-7177(04)90520-1
[25] Lv, X.; Gao, Y., The RKHSM for solving neutral functional-differential equation with proportional delays, Mathematical Methods in the Applied Sciences, 36, 6, 642-649 · Zbl 1267.34133 · doi:10.1002/mma.2612
[26] Minggen, C.; Zhongxing, D., Solution to the definite solution problem of differential equations in space \(W_2^1 [0, 1]\), Advance in Mathematics, 17, 327-328 (1986)
[27] Li, C. l.; Cui, M. G., The exact solution for solving a class nonlinear operator equations in the reproducing kernel space, Applied Mathematics and Computation, 143, 2-3, 393-399 (2003) · Zbl 1034.47030 · doi:10.1016/S0096-3003(02)00370-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.