Yang, Zhichun The asymptotic behavior for a class of impulsive delay differential equations. (English) Zbl 1276.34067 Abstr. Appl. Anal. 2013, Article ID 494067, 7 p. (2013). Summary: This paper is concerned with the asymptotic behavior of a class of impulsive delay differential equations. New criteria for determining attracting sets and attracting basins of impulsive systems are obtained by developing the properties of quasi-invariant sets. Examples and numerical simulations are given to illustrate the effectiveness of our results. Cited in 1 Document MSC: 34K45 Functional-differential equations with impulses 34K25 Asymptotic theory of functional-differential equations Keywords:attracting sets; quasi-invariant sets × Cite Format Result Cite Review PDF Full Text: DOI OA License References: [1] Somoilenko, A. M.; Perslyuk, N. A., Differential Equations With Impulse Effect (1987), Kiev, Ukraine: Visca Skala, Kiev, Ukraine [2] Lakshmikantham, V.; Baĭnov, D. D.; Simeonov, P. S., Theory of Impulsive Differential Equations, 6 (1989), Singapore: World Scientific, Singapore · Zbl 0719.34002 [3] Baĭnov, D. D.; Simeonov, P. S., Systems with Impulse Effect: Stability Theory and Applications (1989), Chichester, UK: Ellis Horwood, Chichester, UK · Zbl 0676.34035 [4] Gopalsamy, K.; Zhang, B. G., On delay differential equations with impulses, Journal of Mathematical Analysis and Applications, 139, 1, 110-122 (1989) · Zbl 0687.34065 · doi:10.1016/0022-247X(89)90232-1 [5] Anokhin, A.; Berezansky, L.; Braverman, E., Exponential stability of linear delay impulsive differential equations, Journal of Mathematical Analysis and Applications, 193, 3, 923-941 (1995) · Zbl 0837.34076 · doi:10.1006/jmaa.1995.1275 [6] Zhao, A.; Yan, J., Asymptotic behavior of solutions of impulsive delay differential equations, Journal of Mathematical Analysis and Applications, 201, 3, 943-954 (1996) · Zbl 0873.34063 · doi:10.1006/jmaa.1996.0293 [7] Shen, J. H., Razumikhin techniques in impulsive functional-differential equations, Nonlinear Analysis, 36, 1, 119-130 (1999) · Zbl 0939.34071 · doi:10.1016/S0362-546X(98)00018-2 [8] Guan, Z. H.; Chen, G., On delayed impulsive Hopfield neural networks, Neural Networks, 12, 273-280 (1999) [9] Liu, X.; Ballinger, G., Uniform asymptotic stability of impulsive delay differential equations, Computers and Mathematics with Applications, 41, 7-8, 903-915 (2001) · Zbl 0989.34061 · doi:10.1016/S0898-1221(00)00328-X [10] Yu, J. S., Stability for nonlinear delay differential equations of unstable type under impulsive perturbations, Applied Mathematics Letters, 14, 7, 849-857 (2001) · Zbl 0992.34055 · doi:10.1016/S0893-9659(01)00055-6 [11] Luo, Z.; Shen, J., Impulsive stabilization of functional differential equations with infinite delays, Applied Mathematics Letters, 16, 5, 695-701 (2003) · Zbl 1068.93054 · doi:10.1016/S0893-9659(03)00069-7 [12] Yan, J.; Zhao, A.; Nieto, J. J., Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra systems, Mathematical and Computer Modelling, 40, 5-6, 509-518 (2004) · Zbl 1112.34052 · doi:10.1016/j.mcm.2003.12.011 [13] Yang, Z.; Xu, D., Existence and exponential stability of periodic solution for impulsive delay differential equations and applications, Nonlinear Analysis, 64, 1, 130-145 (2006) · Zbl 1092.34034 · doi:10.1016/j.na.2005.06.014 [14] Yang, Z.; Xu, D., Stability analysis and design of impulsive control systems with time delay, IEEE Transactions on Automatic Control, 52, 8, 1448-1454 (2007) · Zbl 1366.93276 · doi:10.1109/TAC.2007.902748 [15] Yang, Z.; Xu, D., Robust stability of uncertain impulsive control systems with time-varying delay, Computers and Mathematics with Applications, 53, 5, 760-769 (2007) · Zbl 1133.93362 · doi:10.1016/j.camwa.2006.10.023 [16] Yang, Z.; Huang, T.; Zhang, L.; Yang, Z., On networked control of impulsive hybrid systems, Computers and Mathematics with Applications, 61, 8, 2076-2080 (2011) · Zbl 1219.93109 · doi:10.1016/j.camwa.2010.08.077 [17] Zhang, Y.; Sun, J., Stability of impulsive functional differential equations, Nonlinear Analysis, 68, 12, 3665-3678 (2008) · Zbl 1152.34053 · doi:10.1016/j.na.2007.04.009 [18] Zhou, J.; Wu, Q., Exponential stability of impulsive delayed linear differential equations, IEEE Transactions on Circuits and Systems II, 56, 9, 744-748 (2009) [19] Xu, D.; Yang, Z., Attracting and invariant sets for a class of impulsive functional differential equations, Journal of Mathematical Analysis and Applications, 329, 2, 1036-1044 (2007) · Zbl 1154.34393 · doi:10.1016/j.jmaa.2006.05.072 [20] Ma, Z.; Wang, X., A new singular impulsive delay differential inequality and its application, Journal of Inequalities and Applications, 2009 (2009) · Zbl 1188.34109 · doi:10.1155/2009/461757 [21] Li, B., Invariant and attracting sets of non-autonomous impulsive neutral integro-differential equations, Electronic Journal of Qualitative Theory of Differential Equations, 67, 1-18 (2012) · Zbl 1340.45010 [22] Xu, L.; Xu, D., \(P\)-attracting and \(p\)-invariant sets for a class of impulsive stochastic functional differential equations, Computers and Mathematics with Applications, 57, 1, 54-61 (2009) · Zbl 1165.60329 · doi:10.1016/j.camwa.2008.09.027 [23] Horn, R. A.; Johnson, C. R., Matrix Analysis (1985), Cambridge University Press · Zbl 0576.15001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.