Shin, Su-Young; Kang, Jum-Ran General decay for the degenerate equation with a memory condition at the boundary. (English) Zbl 1276.35036 Abstr. Appl. Anal. 2013, Article ID 682061, 8 p. (2013). Summary: We consider a degenerate equation with a memory condition at the boundary. For a wider class of relaxation functions, we establish a more general decay result, from which the usual exponential and polynomial decay rates are only special cases. Cited in 4 Documents MSC: 35B40 Asymptotic behavior of solutions to PDEs 35L76 Higher-order semilinear hyperbolic equations 35L35 Initial-boundary value problems for higher-order hyperbolic equations 35L80 Degenerate hyperbolic equations Keywords:exponential and polynomial decay PDF BibTeX XML Cite \textit{S.-Y. Shin} and \textit{J.-R. Kang}, Abstr. Appl. Anal. 2013, Article ID 682061, 8 p. (2013; Zbl 1276.35036) Full Text: DOI References: [1] Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Prates Filho, J. S.; Soriano, J. A., Existence and uniform decay of solutions of a degenerate equation with nonlinear boundary damping and boundary memory source term, Nonlinear Analysis: Theory, Methods & Applications, 38, 3, 281-294 (1999) · Zbl 0933.35157 [2] Menezes, S. D. B.; de Oliveira, E. A.; Pereira, D. C.; Ferreira, J., Existence, uniqueness and uniform decay for the nonlinear beam degenerate equation with weak damping, Applied Mathematics and Computation, 154, 2, 555-565 (2004) · Zbl 1063.74067 [3] Aassila, M.; Cavalcanti, M. M.; Domingos Cavalcanti, V. N., Existence and uniform decay of the wave equation with nonlinear boundary damping and boundary memory source term, Calculus of Variations and Partial Differential Equations, 15, 2, 155-180 (2002) · Zbl 1009.35055 [4] Aassila, M.; Cavalcanti, M. M.; Soriano, J. A., Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain, SIAM Journal on Control and Optimization, 38, 5, 1581-1602 (2000) · Zbl 0985.35008 [5] Alabau-Boussouira, F.; Cannarsa, P.; Sforza, D., Decay estimates for second order evolution equations with memory, Journal of Functional Analysis, 254, 5, 1342-1372 (2008) · Zbl 1145.35025 [6] Alabau-Boussouira, F.; Prüss, J.; Zacher, R., Exponential and polynomial stability of a wave equation for boundary memory damping with singular kernels, Comptes Rendus Mathematique, 347, 5-6, 277-282 (2009) · Zbl 1175.35012 [7] Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Ferreira, J., Existence and uniform decay for a non-linear viscoelastic equation with strong damping, Mathematical Methods in the Applied Sciences, 24, 14, 1043-1053 (2001) · Zbl 0988.35031 [8] Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Martinez, P., General decay rate estimates for viscoelastic dissipative systems, Nonlinear Analysis: Theory, Methods & Applications, 68, 1, 177-193 (2008) · Zbl 1124.74009 [9] Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Prates, J. S.; Soriano, J. A., Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping, Differential and Integral Equations, 14, 1, 85-116 (2001) · Zbl 1161.35437 [10] Cavalcanti, M. M.; Oquendo, H. P., Frictional versus viscoelastic damping in a semilinear wave equation, SIAM Journal on Control and Optimization, 42, 4, 1310-1324 (2003) · Zbl 1053.35101 [11] Guesmia, A.; Messaoudi, S. A., General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping, Mathematical Methods in the Applied Sciences, 32, 16, 2102-2122 (2009) · Zbl 1183.35036 [12] Han, X. S.; Wang, M. X., Global existence and uniform decay for a nonlinear viscoelastic equation with damping, Nonlinear Analysis: Theory, Methods & Applications, 70, 9, 3090-3098 (2009) · Zbl 1173.35579 [13] Kang, J. R., Energy decay rates for von Kármán system with memory and boundary feedback, Applied Mathematics and Computation, 218, 18, 9085-9094 (2012) · Zbl 1245.74041 [14] Messaoudi, S. A., General decay of solutions of a viscoelastic equation, Journal of Mathematical Analysis and Applications, 341, 2, 1457-1467 (2008) · Zbl 1145.35078 [15] Messaoudi, S. A., General decay of the solution energy in a viscoelastic equation with a nonlinear source, Nonlinear Analysis: Theory, Methods & Applications, 69, 8, 2589-2598 (2008) · Zbl 1154.35066 [16] Messaoudi, S. A.; Mustafa, M. I., On convexity for energy decay rates of a viscoelastic equation with boundary feedback, Nonlinear Analysis: Theory, Methods & Applications, 72, 9-10, 3602-3611 (2010) · Zbl 1185.35025 [17] Prüss, J., Decay properties for the solutions of a partial differential equation with memory, Archiv der Mathematik, 92, 2, 158-173 (2009) · Zbl 1166.45007 [18] Santos, M. L.; Ferreira, J.; Pereira, D. C.; Raposo, C. A., Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary, Nonlinear Analysis: Theory, Methods & Applications, 54, 5, 959-976 (2003) · Zbl 1032.35140 [19] Cavalcanti, M. M.; Domingos Cavalcanti, V. N.; Santos, M. L., Existence and uniform decay rates of solutions to a degenerate system with memory conditions at the boundary, Applied Mathematics and Computation, 150, 2, 439-465 (2004) · Zbl 1047.35107 [20] Santos, M. L.; Junior, F., A boundary condition with memory for Kirchhoff plates equations, Applied Mathematics and Computation, 148, 2, 475-496 (2004) · Zbl 1046.74028 [21] Rivera, J. E. M.; Oquendo, H. P.; Santos, M. L., Asymptotic behavior to a von Kármán plate with boundary memory conditions, Nonlinear Analysis: Theory, Methods & Applications, 62, 7, 1183-1205 (2005) · Zbl 1132.35085 [22] Park, J. Y.; Kang, J. R., Uniform decay for hyperbolic differential inclusion with memory condition at the boundary, Numerical Functional Analysis and Optimization, 27, 7-8, 875-888 (2006) · Zbl 1107.35090 [23] Messaoudi, S. A.; Soufyane, A., General decay of solutions of a wave equation with a boundary control of memory type, Nonlinear Analysis: Real World Applications, 11, 4, 2896-2904 (2010) · Zbl 1194.35064 [24] Mustafa, M. I.; Messaoudi, S. A., Energy decay rates for a Timoshenko system with viscoelastic boundary conditions, Applied Mathematics and Computation, 218, 18, 9125-9131 (2012) · Zbl 1245.74033 [25] Santos, M. L.; Soufyane, A., General decay to a von Kármán plate system with memory boundary conditions, Differential and Integral Equations, 24, 1-2, 69-81 (2011) · Zbl 1240.35548 [26] Lagnese, J. E., Boundary Stabilization of Thin Plates (1989), Philadelphia, Pa, USA: SIAM. Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA · Zbl 0696.73034 [27] Park, J. Y.; Kang, J. R., Existence, uniqueness and uniform decay for the non-linear degenerate equation with memory condition at the boundary, Applied Mathematics and Computation, 202, 2, 481-488 (2008) · Zbl 1149.35061 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.