×

Some bivariate smooth compactly supported tight framelets with three generators. (English) Zbl 1276.42026

For \(2\times 2\) expansive integer matrices \(A\) such that \(|\det (A)|=2\), using convolution of refinable characteristic functions in Proposition 1 and the oblique extension principle in Theorem A, this paper constructs bivariate smooth compactly supported tight framelets with three generators. Since \(|\det(A)|=2\), the bivariate symbol \(P(t)\) is essentially one-dimensional and therefore the authors can employ the Fejér-Riesz lemma to obtain a desired trigonometric polynomial \(L\) in [T. Goodman et al., Adv. Comput. Math. 7, No. 4, 429–454 (1997; Zbl 0886.65013)]. This allows the authors to obtain compactly supported tight framelets with three generators using a known construction method in Theorem B. The constructed tight framelets have arbitrarily high smoothness, but have only one vanishing moment.
Reviewer: Bin Han (Edmonton)

MSC:

42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems

Citations:

Zbl 0886.65013

References:

[1] Gröchenig, K.; Madych, W. R., Multiresolution analysis, Haar bases, and self-similar tilings of \(R^n\), IEEE Transactions on Information Theory, 38, 2, part 2, 556-568 (1992) · Zbl 0742.42012 · doi:10.1109/18.119723
[2] Han, B., On dual wavelet tight frames, Applied and Computational Harmonic Analysis, 4, 4, 380-413 (1997) · Zbl 0880.42017 · doi:10.1006/acha.1997.0217
[3] Ron, A.; Shen, Z., Affine systems in \(L_2(\mathbb{R}^d)\): the analysis of the analysis operator, Journal of Functional Analysis, 148, 2, 408-447 (1997) · Zbl 0891.42018 · doi:10.1006/jfan.1996.3079
[4] Ron, A.; Shen, Z., Compactly supported tight affine spline frames in \(L_2(\mathbb{R}^d)\), Mathematics of Computation, 67, 221, 191-207 (1998) · Zbl 0892.42018 · doi:10.1090/S0025-5718-98-00898-9
[5] Ron, A.; Shen, Z. W.; Lau, K. S., Construction of compactly supported afine frames in \(L_2(\mathbb{R}^d)\), Advances in Wavelets, 27-49 (1998), New York, NY, USA: Springer, New York, NY, USA
[6] Gröchenig, K.; Ron, A., Tight compactly supported wavelet frames of arbitrarily high smoothness, Proceedings of the American Mathematical Society, 126, 4, 1101-1107 (1998) · Zbl 0911.42014 · doi:10.1090/S0002-9939-98-04232-4
[7] Han, B., Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix, Journal of Computational and Applied Mathematics, 155, 1, 43-67 (2003) · Zbl 1021.42020 · doi:10.1016/S0377-0427(02)00891-9
[8] San Antolin, A.; Zalik, R. A., Some smooth compactly supported tight framelets, Communications on Pure and Applied Mathematics, 3, 3, 345-353 (2012)
[9] Chui, C. K.; He, W.; Stöckler, J., Compactly supported tight and sibling frames with maximum vanishing moments, Applied and Computational Harmonic Analysis, 13, 3, 224-262 (2002) · Zbl 1016.42023 · doi:10.1016/S1063-5203(02)00510-9
[10] Daubechies, I.; Han, B.; Ron, A.; Shen, Z., Framelets: MRA-based constructions of wavelet frames, Applied and Computational Harmonic Analysis, 14, 1, 1-46 (2003) · Zbl 1035.42031 · doi:10.1016/S1063-5203(02)00511-0
[11] Han, B., Nonhomogeneous wavelet systems in high dimensions, Applied and Computational Harmonic Analysis, 32, 2, 169-196 (2012) · Zbl 1241.42028 · doi:10.1016/j.acha.2011.04.002
[12] Han, B., Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space, Applied and Computational Harmonic Analysis, 29, 3, 330-353 (2010) · Zbl 1197.42021 · doi:10.1016/j.acha.2010.01.004
[13] Lai, M.-J.; Stöckler, J., Construction of multivariate compactly supported tight wavelet frames, Applied and Computational Harmonic Analysis, 21, 3, 324-348 (2006) · Zbl 1106.42028 · doi:10.1016/j.acha.2006.04.001
[14] Wojtaszczyk, P., A Mathematical Introduction to Wavelets. A Mathematical Introduction to Wavelets, London Mathematical Society Student Texts, 37, xii+261 (1997), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0865.42026 · doi:10.1017/CBO9780511623790
[15] Strichartz, R. S., Wavelets and self-affine tilings, Constructive Approximation, 9, 2-3, 327-346 (1993) · Zbl 0813.42021 · doi:10.1007/BF01198010
[16] Lagarias, J. C.; Wang, Y., Haar type orthonormal wavelet bases in \(R^2\), The Journal of Fourier Analysis and Applications, 2, 1, 1-14 (1995) · Zbl 0908.42022 · doi:10.1007/s00041-001-4019-2
[17] Daubechies, I., Ten Lectures on Wavelets, 61, xx+357 (1992), Philadelphia, Pa, USA: Society for Industrial and Applied Mathematics, Philadelphia, Pa, USA · Zbl 0776.42018 · doi:10.1137/1.9781611970104
[18] Goodman, T. N. T.; Micchelli, C. A.; Rodriguez, G.; Seatzu, S., Spectral factorization of Laurent polynomials, Advances in Computational Mathematics, 7, 4, 429-454 (1997) · Zbl 0886.65013 · doi:10.1023/A:1018915407202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.