Kolyada, V. I. On limiting relations for capacities. (English) Zbl 1276.46027 Real Anal. Exch. 38(2012-2013), No. 1, 211-240 (2013). Let \(\mathrm{cap}(E; B^\alpha_{p,q})\) be the Besov capacity of a set \(E\) in \(\mathbb{R}^n\). The limiting behavior of this entity is studied as \(\alpha \to 1\) or \(\alpha \to 0\). In particular, it is proved that if \(1\leq p<n\), \(1\leq q<\infty\), and \(E\) is open, then \[ J_{p,q}(\alpha, E)=[\alpha (1- \alpha)q]^{p/q} \mathrm{cap}(E; B^\alpha_{p,q}) \] tends to the Sobolev capacity \(\mathrm{cap}(E; W^1_{p})\) as \(\alpha \to 1\). The case when \(E\) is compact is also considered. Reviewer: Boris Rubin (Baton Rouge) MSC: 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems 31B15 Potentials and capacities, extremal length and related notions in higher dimensions Keywords:capacity; moduli of continuity; Sobolev spaces; Besov spaces PDF BibTeX XML Cite \textit{V. I. Kolyada}, Real Anal. Exch. 38, No. 1, 211--240 (2013; Zbl 1276.46027) Full Text: DOI arXiv Euclid References: [1] D. R. Adams, The classification problem for the capacities associated with the Besov and Triebel-Lizorkin spaces, Banach Center Publ., 22 (1989), 9-24. · Zbl 0695.31004 [2] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Springer-Verlag Berlin Heidelberg New York, 1999. · Zbl 0834.46021 [3] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988. · Zbl 0647.46057 [4] O. V. Besov, V. P. Il’in and S. M. Nikol’skiĭ, Integral Representations of Functions and Embedding Theorems , Vol. I-II, Winston, Washington, D.C., Halsted Press, New York, 1978-1979. · Zbl 0392.46022 [5] J. Bourgain, H. Brezis and P. Mironescu, Another look at Sobolev spaces , Optimal Control and Partial Differential Equations. In honour of Professor Alain Bensoussan’s 60th Birthday. J. L. Menaldi, E. Rofman, A. Sulem (eds), IOS Press, Amsterdam, 2001, 439-455. · Zbl 1103.46310 [6] J. Bourgain, H. Brezis and P. Mironescu, Limiting Embedding Theorems for \(W^{s,p}\) when \(s\uparrow 1\) and applications , J. D’Analyse Math., 87 (2002), 77-101. · Zbl 1029.46030 [7] H. Brezis, How to recognize constant functions. Connections with Sobolev spaces, (Russian) Uspekhi Mat. Nauk 57 (4) (2002), 59-74; English transl. in Russian Math. Surveys, 57 (4) (2002), 693-708. · Zbl 1072.46020 [8] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer New York Doldrecht Heidelberg London, 2011. · Zbl 1220.46002 [9] A. M. Caetano, A. Gogatishvili, and B. Opic, Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness, J. Approx. Theory, 163 (2011), 1373-1399. · Zbl 1238.46024 [10] G. E. Karadzhov, M. Milman and J. Xiao, Limits of higher order Besov spaces and sharp reiteration theorems, J. Funct. Anal., 221 (2005), 323-339. · Zbl 1102.46022 [11] V. I. Kolyada, On imbedding in classes \(\varphi(L),\) Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 418-437 (Russian); English transl.: Math. USSR Izv., 9 (1975), 395-413. · Zbl 0314.46031 [12] V. I. Kolyada, Estimates of rearrangements and embedding theorems , Mat. Sb. 136 (1988), 3-23 (Russian); English transl.: Math. USSR-Sb., 64 (1) (1989), 1-21. · Zbl 0693.46030 [13] V. I. Kolyada, Rearrangements of functions and embedding theorems, Uspekhi matem. nauk 44 (5) (1989), 61-95 (Russian); English transl. in Russian Math. Surveys, 44 (5) (1989), 73-118. · Zbl 0715.41050 [14] V. I. Kolyada, Rearrangement of functions and embedding of anisotropic spaces of Sobolev type , East J. Approx., 4 (2) (1998), 111-199. · Zbl 0917.46019 [15] V. I. Kolyada, Mixed norms and Sobolev type inequalities , Banach Center Publ., 72 (2006), 141-160. · Zbl 1114.46024 [16] V. I. Kolyada, On embedding theorems , in: Nonlinear Analysis, Function Spaces and Applications, vol. 8 (Proceedings of the Spring School held in Prague, 2006), Prague, 2007, 35-94. [17] V. I. Kolyada and A. K. Lerner, On limiting embeddings of Besov spaces , Studia Math., 171 (2005), 1-13. · Zbl 1090.46026 [18] G. Leoni, A First Course in Sobolev Spaces, Graduate Studies in Mathematics, v. 105, 2009. · Zbl 1180.46001 [19] G. Leoni, D. Spector, Characterization of Sobolev and BV spaces , J. Funct. Anal., 261 (2011), 2926-2958. · Zbl 1236.46032 [20] V. Maz’ya, Sobolev spaces with applications to elliptic partial differential equations, Second, revised and augmented edition. Grundlehren der Mathematischen Wissenschaften, 342. Springer, Heidelberg, 2011. [21] V. Maz’ya and T. Shaposhnikova, On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces , J. Funct. Anal., 195 (2002), 230-238. · Zbl 1028.46050 [22] M. Milman, Notes on limits of Sobolev spaces and the continuity of interpolation scales, Trans. Amer. Math. Soc., 357 (2005), 3425-3442. · Zbl 1095.46015 [23] S. M. Nikol’skiĭ, Approximation of Functions of Several Variables and Imbedding Theorems, Springer-Verlag, Berlin-Heidelberg-New York, 1975. [24] E. M. Stein, Singular Integrals and Differentiability Properties of Functions , Princeton Univ. Press, 1970. · Zbl 0207.13501 [25] H. Triebel, Limits of Besov norms, Arch. Math., 96 (2011), 169-175. · Zbl 1222.46028 [26] P. L. Ul’yanov, Embedding of certain function classes \(H_p^\omega\) , Izv. Akad. Nauk SSSR Ser. Mat., 32 (1968), 649-686 (Russian); English transl. in Math. USSR Izv., 2 (1968), 601-637. · Zbl 0176.43301 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.