Averaging for a fully coupled piecewise-deterministic Markov process in infinite dimensions. (English) Zbl 1276.60023

The paper discusses a model reduction technique for certain piecewise deterministic processes (PDPs) taking values in Hilbert spaces. This type of càdlàg Markov process describes behaviour of a process with temporal evolution usually given by a (parabolic) partial differential equation interlaced with random jumps in its coefficients where the piecewise deterministic and the stochastic jump evolution are fully coupled. The designation ‘fully coupled’ means that on one hand the temporal evolution depends on the random jumps of the coefficient and on the other hand the random dynamics of the jumps depend on the deterministic temporal evolution. In the application of main interest is a stochastic spatio-temporal neuron model introduced in [T. D. Austin, Ann. Appl. Probab. 18, No. 4, 1279–1325 (2008; Zbl 1157.60066)], the model is a reaction-diffusion equation with randomly changing coefficients in the reaction term.
Fixing the inter-jump evolution to a constant value, the jumping part alone usually forms a continuous-time Markov chain. The authors then discuss the setup when the possible transitions in the Markov chain decompose in fast and slow jumps effectively becoming a slow-fast system. A model reduction is then possible for taking the fast subsystem to its limit which is given by the stationary solution to the fast sub-system Markov chain, hence the term ‘averaging’. In the study this limit is established in a mathematical rigorous way in the sense of weak convergence of the laws of the processes. The general theory developed for infinite dimensional PDPs is then applied to the axon model of [loc. cit.]. A numerical example illustrates that the averaged equation preserves the essential qualitative behaviour of the more detailed model.


60F05 Central limit and other weak theorems
60J75 Jump processes (MSC2010)
92C20 Neural biology
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
47B80 Random linear operators


Zbl 1157.60066
Full Text: DOI arXiv Euclid


[1] Austin, T. D. (2008). The emergence of the deterministic Hodgkin-Huxley equations as a limit from the underlying stochastic ion-channel mechanism. Ann. Appl. Prob. 18 , 1279-1325. · Zbl 1157.60066
[2] Buckwar, R. and Riedler, M. G. (2011). An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution. J. Math. Biol. 63 , 1051-1093. · Zbl 1284.92038
[3] Chow, C. C. and White, J. A. (1996). Spontaneous action potentials due to channel fluctuations. Biophys. J. 71 , 3013-3021.
[4] Costa, O. L. V. and Dufour, F. (2008). Stability and ergodicity of piecewise deterministic Markov processes. SIAM J. Control Optimization 47 , 1053-1077. · Zbl 1159.60339
[5] Costa, O. L. V. and Dufour, F. (2011). Singular perturbation for the discounted continuous control of piecewise deterministic Markov processes. Appl. Math. Optimization 63 , 357-384. · Zbl 1222.60056
[6] Crudu, A., Debussche, A., Muller, A. and Radulescu, O. (2012). Convergence of stochastic gene networks to hybrid piecewise deterministic processes. To appear in Ann. Appl. Prob. · Zbl 1261.60073
[7] Davis, M. H. A. (1984). Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models. J. R. Statist. Soc. B 46 , 353-388. · Zbl 0565.60070
[8] Davis, M. H. A. (1993). Markov Models and Optimization (Monogr. Statist. Appl. Prob. 49 ). Chapman and Hall, London. · Zbl 0780.60002
[9] Defelice, L. J. and Isaac, A. (1993). Chaotic states in a random world: relationship between the nonlinear differential equations of excitability and the stochastic properties of ion channels. J. Statist. Phys. 70 , 339-354. · Zbl 1002.92517
[10] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes: Characterization and Convergence . John Wiley, New York. · Zbl 0592.60049
[11] Faggionato, A., Gabrielli, D. and Crivellari, M. R. (2010). Averaging and large deviation principles for fully-coupled piecewise deterministic Markov processes and applications to molecular motors. Markov Process. Relat. Fields 16 , 497-548. · Zbl 1266.60048
[12] Faisal, A. A., White, J. A. and Laughlin, S. B. (2005). Ion-channel noise places limits on the miniaturization of the brain’s wiring. Current Biol. 15 , 1143-1149.
[13] Fitzhugh, R. (1960). Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J. Gen. Physiol. 43 , 867-896.
[14] Flaim, S. N., Gilles, W. R. and McCulloch, A. D. (2006). Contributions of sustained \(I_{\text{Na}}\) and \(I_\text{Kv43}\) to transmural heterogeneity of early repolarization and arrhythmogenesis in canine left ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 291 , 2617-2629.
[15] Fonbona, J., Guérin, H. and Malrieu, F. (2012). Quantitative estimates for the long time behavior of a PDMP describing the movement of bacteria. Submitted.
[16] Fox, R. F. (1997). Stochastic versions of the Hodgkin-Huxley equations. Biophys. J. 72 , 2068-2074.
[17] Greenstein, J. L., Hinch, R. and Winslow, R. L. (2006). Mechanisms of excitation-contraction coupling in an integrative model of the cardiac ventricular myocyte. Biophys. J. 90 , 77-91.
[18] Henry, D. (1981). Geometric Theory of Semilinear Parabolic Equations (Lecture Notes Math. 840 ). Springer, Berlin. · Zbl 0456.35001
[19] Hille, B. (1992). Ionic Channels of Excitable Membranes , 2nd edn. Sinauer, Sunderland, MA.
[20] Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117 , 500-544.
[21] Jacod, J. and Shiryaev, A. N. (1987). Limit Theorems for Stochastic Processes . Springer, Berlin. · Zbl 0635.60021
[22] Métivier, M. (1984). Convergence faible et principe d’invariance pour des martingales à valeurs dans des espaces de Sobolev. Ann. Inst. H. Poincaré Prob. Statist. 20 , 329-348. · Zbl 0549.60041
[23] Pakdaman, K., Thieullen, M. and Wainrib, G. (2012). Asymptotic expansion and central limit theorem for multiscale piecewise deterministic Markov processes. To appear in Stoch. Process Appl. · Zbl 1261.60031
[24] Pavliotis, G. A. and Stuart, A. M. (2008). Multiscale Methods (Texts Appl. Math. 53 ). Springer, New York. · Zbl 1160.35006
[25] Riedler, M. G. (2011). Almost sure convergence of numerical approximations for piecewise deterministic Markov processes. Preprint. Available at http://arxiv.org/abs/1112.1190v1.
[26] Riedler, M. G., Thieullen, M. and Wainrib, G. (2012). Limit theorems for infinite-dimensional piecewise deterministic processes and applications to stochastic neuron models. Submitted. · Zbl 1255.60126
[27] Yin, G. G. and Zhang, Q. (1997). Continuous-Time Markov Chains and Applications . Springer, Berlin. · Zbl 0913.60068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.