×

Confluence and combinatorics in finitely generated unital lattice-ordered abelian groups. (English) Zbl 1277.06007

In this paper, the authors are interested in the category whose objects are unital \(l\)-groups (i.e. abelian groups \((G,u)\) equipped with a translation-invariant lattice-order and a distinguished order-unit \(u\)) and whose morphisms are unital \(l\)-homomorphisms (i.e. morphisms which preserve the lattice and the group structure and map order-units into order-units).
They use the categorical equivalence of this category with another one to define free unital \(l\)-groups as finitely presented unital \(l\)-groups. Which allows them to infer that finitely generated unital \(l\)-groups are the direct limits of countable direct systems of finitely presented unital \(l\)-groups with surjective connecting unital \(l\)-homomorphisms. Also, they define the confluence of two sequences of unital \(l\)-groups.
After having reported that in general categories confluence is not a necessary condition for direct limits to be isomorphic, the authors show in Theorems 3.1 and 3.3 that direct systems of unital \(l\)-groups and unital \(l\)-homomorphisms with isomorphic limits are necessarily confluent.
Next, they apply Alexander stellar operations to introduce suitable sequences of weighted abstract simplicial complexes, called stellar sequences, and construct a map which associates to each stellar sequence a unital \(l\)-group. They establish that, up to isomorphism, each finitely unital \(l\)-group comes from some stellar sequence.
Finally, they provide a necessary and sufficient conditions under which two stellar sequences can be represented by isomorphic unital \(l\)-groups.

MSC:

06F20 Ordered abelian groups, Riesz groups, ordered linear spaces
52B11 \(n\)-dimensional polytopes
52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)
57Q15 Triangulating manifolds
46L05 General theory of \(C^*\)-algebras

References:

[1] DOI: 10.2307/1968099 · JFM 56.0497.02 · doi:10.2307/1968099
[2] DOI: 10.1016/0022-1236(72)90031-6 · Zbl 0235.46089 · doi:10.1016/0022-1236(72)90031-6
[3] Boca F., Canad. J. Math 60 pp 975– (2008) · Zbl 1158.46039 · doi:10.4153/CJM-2008-043-1
[4] DOI: 10.2307/1996380 · Zbl 0264.46057 · doi:10.2307/1996380
[5] DOI: 10.1007/s00012-010-0039-6 · Zbl 1196.06004 · doi:10.1007/s00012-010-0039-6
[6] DOI: 10.1006/aima.1993.1046 · Zbl 0823.46053 · doi:10.1006/aima.1993.1046
[7] DOI: 10.1512/iumj.1980.29.29013 · Zbl 0457.46046 · doi:10.1512/iumj.1980.29.29013
[8] DOI: 10.1016/0021-8693(76)90242-8 · Zbl 0323.46063 · doi:10.1016/0021-8693(76)90242-8
[9] DOI: 10.1515/JGT.2007.049 · Zbl 1136.06009 · doi:10.1515/JGT.2007.049
[10] Morelli R., J. Alg. Geom. 5 pp 751– (1996)
[11] DOI: 10.1016/0022-1236(86)90015-7 · Zbl 0597.46059 · doi:10.1016/0022-1236(86)90015-7
[12] DOI: 10.1016/0001-8708(88)90006-0 · Zbl 0678.06008 · doi:10.1016/0001-8708(88)90006-0
[13] Mundici D., Discrete Contin. Dyn. Syst. 21 pp 537– (2008) · Zbl 1154.28007 · doi:10.3934/dcds.2008.21.537
[14] DOI: 10.4171/RLM/549 · Zbl 1185.46042 · doi:10.4171/RLM/549
[15] DOI: 10.1515/FORUM.2008.048 · Zbl 1163.46036 · doi:10.1515/FORUM.2008.048
[16] DOI: 10.1090/S0002-9947-97-01701-7 · Zbl 0867.14005 · doi:10.1090/S0002-9947-97-01701-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.