×

On some Rajchman measures and equivalent Salem’s problem. (English) Zbl 1277.33004

Summary: We construct certain Rajchman measures by using integrability properties of the Fourier and Fourier-Stieltjes transforms. In particular, we state a problem and prove that it is equivalent to the known and still unsolved question posed by R. Salem [Trans. Am. Math. Soc. 53, 427–439 (1943; Zbl 0060.13709)] whether Fourier-Stieltjes coefficients of the Minkowski question mark function vanish at infinity.

MSC:

33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
42A16 Fourier coefficients, Fourier series of functions with special properties, special Fourier series
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
44A15 Special integral transforms (Legendre, Hilbert, etc.)

Citations:

Zbl 0060.13709

References:

[1] G. Alkauskas, The Minkowski’s \(?(x)\) function and Salem’s problem, C.R. Acad. Sci. Paris, Ser. I , 350 (2012), 137-140. · Zbl 1247.11011 · doi:10.1016/j.crma.2012.01.012
[2] A. Denjoy, Sur une fonction réelle de Minkowski, J. Math. Pures Appl. 17 (1938), 105-151 (in French). · Zbl 0018.34602
[3] N. Dunford, J.T. Schwartz, Linear Operators, General Theory. Part I , John Wiley and Sons, New Jersey (1988). · Zbl 0635.47001
[4] O. S. Iva\~sev-Musatov, On Fourier - Stieltjes coefficients of singular functions, Izv. Akad. Nauk SSSR, Ser. Mat., 20 (1956), 179- 196 (in Russian). · Zbl 0074.29301
[5] R., Lyons, Seventy years of Rajchman measures, J. Fourier Anal. Appl., Kahane Special Issue , (1995), 363-377. · Zbl 0886.43001
[6] C. Marle, Mesures et Probabilité , Hermann (1974) (in French).
[7] D. Menchoff, Sur l’unicité du développment trigonométric, Comptes Rendus , 163 (1916), 433-436 (in French). · JFM 46.0457.02
[8] A.P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series: Vol. 2: Special Functions , Gordon and Breach, New York (1986). · Zbl 0606.33001
[9] R. Salem, On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc., 53 (3) (1943), 427-439. · Zbl 0060.13709 · doi:10.2307/1990210
[10] R. Salem, On monotonic functions whose spectrum is a Cantor set with constant ratio of dissection, Proc Nat. Acad. Sc. USA, 41 (1) (1955), 49-55. · Zbl 0068.27703 · doi:10.1073/pnas.41.1.49
[11] R. Salem, Algebraic Numbers and Fourier Analysis , Heath Math. Monographs, Boston (1963). · Zbl 0126.07802
[12] E.C. Titchmarsh, An Introduction to the Theory of Fourier Integrals , Clarendon Press, Oxford ( 1937). · Zbl 0017.40404
[13] N. Wiener, A. Wintner, Fourier-Stieltjes transforms and singular infinite convolutions, Amer. J. Math. 60 (3) (1938), 513-522. · Zbl 0019.16901 · doi:10.2307/2371591
[14] S.B. Yakubovich, Index Transforms, Singapore, World Scientific Publishing Company (1996). · Zbl 0845.44001
[15] S. Yakubovich, The Fourier-Stieltjes transform of the Minkowski’s \(?(x)\) function and an affirmative solution to Salem’s problem, C.R. Acad. Sci. Paris, Ser. I , 349 (11-12) (2011), 633-636. · Zbl 1218.42001 · doi:10.1016/j.crma.2011.04.004
[16] S. Yakubovich, Corrigendum to the Note ”The Fourier-Stieltjes transform of the Minkowski’s \(?(x)\) function and an affirmative solution to Salem’s problem”, [ C.R. Acad. Sci. Paris, Ser. I, 349 (2011), 633-636], C.R. Acad. Sci. Paris, Ser. I , 350 (2012), 147. · Zbl 1218.42001 · doi:10.1016/j.crma.2011.04.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.