Miličić, Siniša; Pašić, Mervan Nonautonomous differential equations in Banach space and nonrectifiable attractivity in two-dimensional linear differential systems. (English) Zbl 1277.34086 Abstr. Appl. Anal. 2013, Article ID 935089, 10 p. (2013). Summary: We study the asymptotic behaviour on a finite interval of a class of linear nonautonomous singular differential equations in Banach space by the nonintegrability of the first derivative of its solutions. According to these results, the nonrectifiable attractivity on a finite interval of the zero solution of the two-dimensional linear integrable differential systems with singular matrix-elements is characterized. Cited in 4 Documents MSC: 34G10 Linear differential equations in abstract spaces 34D05 Asymptotic properties of solutions to ordinary differential equations Keywords:finite interval; singular differential equations PDFBibTeX XMLCite \textit{S. Miličić} and \textit{M. Pašić}, Abstr. Appl. Anal. 2013, Article ID 935089, 10 p. (2013; Zbl 1277.34086) Full Text: DOI OA License References: [1] Amato, F.; Ariola, M.; Carbone, M.; Cosentino, C., Finite-time control of linear systems: a survey, Current Trends in Nonlinear Systems and Control. Current Trends in Nonlinear Systems and Control, Systems & Control: Foundations & Applications, 195-213 (2006), Boston, Mass, USA: Birkhäuser, Boston, Mass, USA · Zbl 1084.93001 · doi:10.1007/0-8176-4470-9_11 [2] Haller, G., A variational theory of hyperbolic Lagrangian coherent structures, Physica D, 240, 7, 574-598 (2011) · Zbl 1214.37056 · doi:10.1016/j.physd.2010.11.010 [3] Peacock, T.; Dabiri, J., Introduction to focus issue: lagrangian coherent structures, Chaos, 20, 1 (2010) · Zbl 1311.76032 [4] Rateitschak, K.; Wolkenhauer, O., Thresholds in transient dynamics of signal transduction pathways, Journal of Theoretical Biology, 264, 2, 334-346 (2010) · Zbl 1406.92275 · doi:10.1016/j.jtbi.2010.02.001 [5] Rachůnková, I.; Rachůnek, L., Asymptotic formula for oscillatory solutions of some singular nonlinear differential equation, Abstract and Applied Analysis, 2011 (2011) · Zbl 1222.34034 · doi:10.1155/2011/981401 [6] Singh, B. B.; Chandarki, I. M., On the asymptotic behaviours of solutions of third order non-linear autonomous differential equation governing the MHD flow, Differential Equations & Applications, 3, 3, 385-397 (2011) · Zbl 1336.76046 · doi:10.7153/dea-03-24 [7] Hartman, P., Ordinary Differential Equations (1982), Boston, Mass, USA: Birkhäauser, Boston, Mass, USA · Zbl 0125.32102 [8] Coppel, W. A., Stability and Asymptotic Behavior of Differential Equations (1965), Boston, Mass, USA: D. C. Heath and Co., Boston, Mass, USA · Zbl 0154.09301 [9] Castillo, S.; Pinto, M., Asymptotic integration of ordinary different systems, Journal of Mathematical Analysis and Applications, 218, 1, 1-12 (1998) · Zbl 0945.34035 · doi:10.1006/jmaa.1997.5683 [10] Bodine, S., A dynamical systems result on asymptotic integration of linear differential systems, Journal of Differential Equations, 187, 1, 1-22 (2003) · Zbl 1037.34042 · doi:10.1016/S0022-0396(02)00028-1 [11] Medina, R.; Pinto, M., On the asymptotic behavior of solutions of certain second order nonlinear differential equations, Journal of Mathematical Analysis and Applications, 135, 2, 399-405 (1988) · Zbl 0668.34056 · doi:10.1016/0022-247X(88)90163-1 [12] Matsunaga, H., Stability switches in a system of linear differential equations with diagonal delay, Applied Mathematics and Computation, 212, 1, 145-152 (2009) · Zbl 1171.34346 · doi:10.1016/j.amc.2009.02.010 [13] Choi, S. K.; Koo, N. J., Asymptotic property for linear integro-differential systems, Nonlinear Analysis: Theory, Methods & Applications, 70, 5, 1862-1872 (2009) · Zbl 1161.45006 · doi:10.1016/j.na.2008.02.086 [14] Choi, S. K.; Koo, N. J.; Dontha, S., Asymptotic property in variation for nonlinear differential systems, Applied Mathematics Letters, 18, 1, 117-126 (2005) · Zbl 1075.34042 · doi:10.1016/j.aml.2003.07.019 [15] Qian, C.; Sun, Y., Global attractivity of solutions of nonlinear delay differential equations with a forcing term, Nonlinear Analysis: Theory, Methods & Applications, 66, 3, 689-703 (2007) · Zbl 1111.34341 · doi:10.1016/j.na.2005.12.010 [16] Miličić, S., Geometric and fractal properties of solutions of linear differential systems [Ph.D. thesis], Zagreb, Croatia: University of Zagreb, Zagreb, Croatia [17] Falconer, K., Fractal Geometry: Mathematical Fondations and Applications (1999), New York, NY, USA: John Wiley & Sons, New York, NY, USA [18] Tricot, C., Curves and Fractal Dimension (1995), New York, NY, USA: Springer, New York, NY, USA · Zbl 0847.28004 [19] Evans, L. C.; Gariepy, R. F., Measure Theory and Fine Properties of Functions (1999), New York, NY, USA: CRC Press, New York, NY, USA · Zbl 0954.49024 [20] Kwong, M. K.; Pašić, M.; Wong, J. S. W., Rectifiable oscillations in second-order linear differential equations, Journal of Differential Equations, 245, 8, 2333-2351 (2008) · Zbl 1168.34027 · doi:10.1016/j.jde.2008.05.016 [21] Onitsuka, M.; Sugie, J., Uniform global asymptotic stability for half-linear differential systems with time-varying coefficients, Proceedings of the Royal Society of Edinburgh A, 141, 5, 1083-1101 (2011) · Zbl 1232.34081 · doi:10.1017/S0308210510000326 [22] Daleckii, Ju. L.; Kreĭn, M. G., Stability of Solutions of Differential Equations in Banach Space. Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs, 43 (1974), Providence, RI, USA: American Mathematical Society, Providence, RI, USA · Zbl 0286.34094 [23] Kreĭn, S. G., Linear Differential Equations in Banach Space. Linear Differential Equations in Banach Space, Translations of Mathematical Monographs, 29 (1971), Providence, RI, USA: American Mathematical Society, Providence, RI, USA [24] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations. Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44 (1983), New York, NY, USA: Springer, New York, NY, USA · Zbl 0516.47023 [25] Favini, A.; Obrecht, E., Differential Equations in Banach Spaces. Differential Equations in Banach Spaces, Lectures notes in Mahtematics, 1223 (1985), New York, NY, USA: Springer, New York, NY, USA · Zbl 0606.00007 [26] Hao, L. H.; Schmitt, K., Fixed point theorems of Krasnoselskii type in locally convex spaces and applications to integral equations, Results in Mathematics, 25, 3-4, 290-314 (1994) · Zbl 0808.47042 [27] Avramescu, C., Some remarks on a fixed point theorem of Krasnoselskii, Electronic Journal of Qualitative Theory of Differential Equations, 2003, 5, 1-15 (2003) · Zbl 1028.47039 [28] Ngoc, L. T. P.; Long, N. T., On a fixed point theorem of Krasnoselskii type and application to integral equations, Fixed Point Theory and Applications, 2006 (2006) · Zbl 1143.47302 [29] Ngoc, L. T. P.; Long, N. T., Applying a fixed point theorem of Krasnosel’skii type to the existence of asymptotically stable solutions for a Volterra-Hammerstein integral equation, Nonlinear Analysis: Theory, Methods & Applications, 74, 11, 3769-3774 (2011) · Zbl 1214.47049 · doi:10.1016/j.na.2011.03.021 [30] Lang, S., Real and Functional Analysis (1993), New York, NY, USA: Springer, New York, NY, USA · Zbl 0831.46001 [31] Roman, S., Advanced Linear Algebra (2008), New York, NY, USA: Springer, New York, NY, USA · Zbl 1132.15002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.