Some properties of layer potentials and boundary integral operators for the wave equation. (English) Zbl 1277.35082

Summary: We establish some new estimates for layer potentials of the acoustic wave equation in the time domain, and for their associated retarded integral operators. These estimates are proven using time-domain estimates based on the theory of evolution equations and improve known estimates that use the Laplace transform.


35B45 A priori estimates in context of PDEs
35L05 Wave equation
31B10 Integral representations, integral operators, integral equations methods in higher dimensions
31B35 Connections of harmonic functions with differential equations in higher dimensions
34K08 Spectral theory of functional-differential operators
Full Text: DOI arXiv Euclid


[1] R.A. Adams and J.J.F. Fournier, Sobolev spaces , Pure Appl. Math. 140 , Elsevier/Academic Press, Amsterdam, second edition, 2003. · Zbl 1098.46001
[2] A. Bamberger and T.H. Duong, Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d’une onde acoustique I, Math. Meth. Appl. Sci. 8 (1986), 405-435. · Zbl 0618.35069
[3] —, Formulation variationnelle pour le calcul de la diffraction d’une onde acoustique par une surface rigide , Math. Meth. Appl. Sci. 8 (1986), 598-608. · Zbl 0636.65119
[4] L. Banjai and V. Gruhne, Efficient long-time computations of time-domain boundary integrals for 2D and dissipative wave equation, J. Comput. Appl. Math. 235 (2011), 4207-4220. · Zbl 1228.65188
[5] L. Banjai and C. Lubich, An error analysis of Runge-Kutta convolution quadrature , BIT 51 (2011), 483-496. · Zbl 1228.65245
[6] L. Banjai, C. Lubich and J. Melenk, Runge-Kutta convolution quadrature for operators arising in wave propagation , Numer. Math. 119 (2011), 1-20. · Zbl 1227.65027
[7] D. Braess, Finite elements , in Theory, fast solvers, and applications in elasticity theory , third edition, Cambridge University Press, Cambridge, 2007. · Zbl 1180.65146
[8] Q. Chen and P. Monk, Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature , submitted. · Zbl 1344.65090
[9] M. Costabel, Boundary integral operators on Lipschitz domains : elementary results , SIAM J. Math. Anal. 19 (1988), 613-626. · Zbl 0644.35037
[10] R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology , in Evolution problems I, With the collaboration of Michel Artola, Michel Cessenat and Hélène Lanchon, Vol. 5. Springer-Verlag, Berlin, 1992. · Zbl 0755.35001
[11] R. Kress, Linear integral equations , Appl. Math. Sci. 82 , Springer-Verlag, New York, 1999. · Zbl 0671.45001
[12] A.R. Laliena and F.-J. Sayas, A distributional version of Kirchhoff’s formula , J. Math. Anal. Appl. 359 (2009), 197-208. · Zbl 1178.35127
[13] —, Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves , Numer. Math. 112 (2009), 637-678. · Zbl 1178.65117
[14] C. Lubich, On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations , Numer. Math. 67 (1994), 365-389. · Zbl 0795.65063
[15] W. McLean, Strongly elliptic systems and boundary integral equations , Cambridge University Press, Cambridge, 2000. · Zbl 0948.35001
[16] J.-C. Nédélec and J. Planchard, Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans \(R^3\) , Rev. Fran. Auto. Infor. Rech. Oper. 7 (1973), 105-129. · Zbl 0277.65074
[17] A. Pazy, Semigroups of linear operators and applications to partial differential equations , Appl. Math. Sci. 44 , Springer-Verlag, New York, 1983. · Zbl 0516.47023
[18] F.-J. Sayas, Energy estimates for Galerkin semidiscretizations of time domain boundary integral equations , Numer. Math., · Zbl 1277.65080
[19] F. Trèves, Topological vector spaces, distributions and kernels , Dover Publications, Inc., Mineola, NY, 2006. Unabridged republication of the 1967 original. \noindentstyle · Zbl 0171.10402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.