Chen, Peng; Duong, Xuan Thinh; Yan, Lixin \(L^p\)-bounds for Stein’s square functions associated to operators and applications to spectral multipliers. (English) Zbl 1277.42011 J. Math. Soc. Japan 65, No. 2, 389-409 (2013). The authors prove a Hörmander-type spectral multiplier theorem for non-negative, self-adjoint operators applicable to, for example, sub-Laplacians acting on Lie groups of polynomial growth and Schrödinger operators with rough potentials. They assume that the kernel \(p_t(x, y)\) of the semigroup \(e^{-tL}\) generated by the operator \(-L\) satisfies the Gaussian upper bound \[ |p_t(x,y)| \leq \frac{C}{V(x,t^{1/m})} \exp\left(-\frac{d(x, y)^{m/(m-1)}}{ct^{1/(m-1)}}\right) \] for all \(t > 0\) and \(x, y \in X\), where \((X, d,\mu)\) is an appropriate metric measure space and \(V(x,r)\) is the \(\mu\)-measure of the ball of radius \(r\) centered at \(x\). Here \(C, c > 0\) and \(m \geq 2\). They also assume the kernel \(K_{F(L^{1/m})}(x, y)\) of the operator \(F(L^{1/m})\) satisfies \[ \int_X |K_{F(L^{1/m})}(x, y)|^2 d\mu(x) \leq \frac{C}{V(y,t^{-1})}\|F (t\cdot)\|_{L^q}^2 \] for some \(2 \leq q \leq \infty\), any \(t > 0\) and all Borel functions \(F\) supported on \([0, t]\).The theorem is proved by first showing \(L^p\) bounds for an associated square function \[ \mathcal{G}_\delta(L)f(x) = c_{m\delta}\left( \int_0^\infty \left|\frac{\partial}{\partial R}S^{\delta + 1}(L)f(x)\right|^2 RdR \right)^{1/2}, \] first introduced by E. M. Stein for \(L = -\Delta\) in his study of Bochner-Riesz means \(S_R^\delta (L) = (I - L/R^m)^\delta_+\) of order \(\delta\).The multiplier theorem states that if \(F\) is a locally absolutely continuous function on \((0, \infty)\) and \[ B := \|F\|_{L^\infty} + \left( \sup_{R > 0} R\int_R^{2R} |F'(\lambda)|^2 d\lambda \right)^{1/2} < \infty, \] then \(F(L)\) is bounded on \(L^p(X)\) for all \(p \in (0,\infty)\) satisfying \((n + 1 - 2/q)|1/p - 1/2| < 1/2\). In addition, \[ \|F(L)\|_{L^p(X) \to L^p(X)} \leq CB \] with \(C\) independent of \(F\). Reviewer: David Rule (Linköping) Cited in 9 Documents MSC: 42B15 Multipliers for harmonic analysis in several variables 42B25 Maximal functions, Littlewood-Paley theory 47F05 General theory of partial differential operators Keywords:Stein’s square function; Bochner-Riesz means; non-negative self-adjoint operator; heat semigroup; space of homogeneous type PDF BibTeX XML Cite \textit{P. Chen} et al., J. Math. Soc. Japan 65, No. 2, 389--409 (2013; Zbl 1277.42011) Full Text: DOI Euclid References: [1] G. Alexopoulos, Spectral multipliers on Lie groups of polynomial growth, Proc. Amer. Math. Soc., 120 (1994), 973-979. · Zbl 0794.43003 [2] P. Auscher, On Necessary and Sufficient Conditions for \(L^p\)-Estimates of Riesz Transforms Associated to Elliptic Operators on \({\mathbb R}^n\) and Related Estimates, Mem. Amer. Math. Soc., 186 , Amer. Math. Soc., Providence, RI, 2007. · Zbl 1221.42022 [3] P. Auscher, T. Coulhon, X. T. Duong and S. Hofmann, Riesz transform on manifolds and heat kernel regularity, Ann. Sci. École Norm. Sup. (4), 37 , (2004), 911-957. · Zbl 1086.58013 [4] F. Bernicot and J. Zhao, New abstract Hardy spaces, J. Funct. Anal., 255 (2008), 1761-1796. · Zbl 1171.42012 [5] A. Carbery, The boundedness of the maximal Bochner-Riesz operator on \(L^4({\mathbb R}^2)\), Duke Math. J., 50 (1983), 409-416. · Zbl 0522.42015 [6] A. Carbery, G. Gasper and W. Trebels, Radial Fourier multipliers of \(L^p({\mathbb R}^2)\), Proc. Nat. Acad. Sci. U.S.A., 81 (1984), 3254-3255. [7] M. Christ, On almost everywhere convergence of Bochner-Riesz means in higher dimensions, Proc. Amer. Math. Soc., 95 (1985), 16-20. · Zbl 0569.42011 [8] M. Christ, \(L^p\) bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math. Soc., 328 (1991), 73-81. · Zbl 0739.42010 [9] R. R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math., 242 , Springer-Verlag, Berlin, New York, 1971. · Zbl 0224.43006 [10] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Math., 92 , Cambridge University Press, 1989. · Zbl 0699.35006 [11] L. De Michele and G. Mauceri, \(H^p\) multipliers on stratified groups, Ann. Mat. Pura Appl. (4), 148 (1987), 353-366. · Zbl 0638.43007 [12] H. Dappa, A Marcinkiewicz criterion for \(L^p\)-multipliers, Pacific J. Math., 111 (1984), 9-21. · Zbl 0553.42006 [13] X. T. Duong and A. McIntosh, Singular integral operators with non-smooth kernels on irregular domains, Rev. Mat. Iberoamericana, 15 (1999), 233-265. · Zbl 0980.42007 [14] X. T. Duong, E. M. Ouhabaz and A. Sikora, Plancherel-type estimates and sharp spectral multipliers, J. Funct. Anal., 196 (2002), 443-485. · Zbl 1029.43006 [15] X. T. Duong, A. Sikora and L. Yan, Weighted norm inequalities, Gaussian bounds and sharp spectral multipliers, J. Funct. Anal., 260 (2011), 1106-1131. · Zbl 1250.42042 [16] G. B. Folland and E. M. Stein, Hardy spaces on Homogeneous Groups, Math. Notes, 28 , Princeton University Press, 1982. · Zbl 0508.42025 [17] C. Guillarmou, A. Hassell and A. Sikora, Restriction and spectral multiplier theorems on asymptotically conic manifolds, Anal. PDE, · Zbl 1293.35187 [18] L. Hörmander, Estimates for translation invariant operators in \(L^p\) spaces, Acta Math., 104 (1960), 93-140. · Zbl 0093.11402 [19] A. Hulanicki and E. M. Stein, Marcinkiewicz multiplier theorem for stratified groups, unpublished manuscript. [20] S. Igari, A note on the Littlewood-Paley function \(g^{\ast}(f)\), Tôhoku Math. J. (2), 18 (1966), 232-235. · Zbl 0158.05702 [21] S. Igari and S. Kuratsubo, A sufficient condition for \(L^p\)-multipliers, Pacific J. Math., 38 (1971), 85-88. · Zbl 0224.42022 [22] S. Lee, K. M. Rogers and A. Seeger, Improved bounds for Stein’s square functions, preprint arXiv: · Zbl 1254.42018 [23] E. M. Ouhabaz, Analysis of Heat Equations on Domains, London Math. Soc. Monogr., 31 , Princeton University Press, 2005. · Zbl 1082.35003 [24] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I, Academic Press, 1980. · Zbl 0459.46001 [25] D. W. Robinson, Elliptic Operators and Lie Groups, Oxford Math. Monogr., The Clarendon Press, Oxford University Press, New York, 1991. · Zbl 0747.47030 [26] A. Sikora, On the \({L}^ 2\to {L}^ \infty\) norms of spectral multipliers of “quasi-homogeneous” operators on homogeneous groups, Trans. Amer. Math. Soc., 351 (1999), 3743-3755. · Zbl 0936.42009 [27] B. Simon, Maximal and minimal Schrödinger forms, J. Operator Theory, 1 (1979), 37-47. · Zbl 0446.35035 [28] E. M. Stein, Localization and summability of multiple Fourier series, Acta Math., 100 (1958), 93-147. · Zbl 0085.28401 [29] E. M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser., 43 , Princeton University Press, Princeton, NJ, 1993. · Zbl 0821.42001 [30] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser., 32 , Princeton University Press, Princeton, NJ, 1971. · Zbl 0232.42007 [31] T. Tao, A sharp bilinear restrictions estimate for paraboloids, Geom. Funct. Anal., 13 (2003), 1359-1384. · Zbl 1068.42011 [32] N. Varopoulos, L. Saloff-Coste and T. Coulhon, Analysis and Geometry on Groups, Cambridge Tracts in Math., 100 , Cambridge University Press, Cambridge, 1992. · Zbl 0813.22003 [33] K. Yosida, Functional Analysis (Fifth edition), Grundlehren Math. Wiss., 123 , Springer-Verlag, Berlin, 1978. [34] A. Zygmund, Trigonometric Series. 2nd ed., 2 , Cambridge University Press, New York, 1959. · Zbl 0085.05601 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.