×

Gabor frames and totally positive functions. (English) Zbl 1277.42037

A fundamental problem of Gabor analysis, that has its origins in the foundations of quantum mechanics and of information theory, is to determine triples \((g,\alpha,\beta)\) consisting of a window \(L^{2}\)-function \(g\) and lattice parameters \(\alpha,\beta > 0\) such that the set \(G(g,\alpha,\beta)=\{e^{2\pi i \beta l t}g(t-\alpha k):k,l \in \mathbb{Z}\}\) is a frame for \(L^{2}(\mathbb{R})\).
In this paper it is proved that if \(g\) is a totally positive function of finite type, that is, \(\widehat{g}(\xi)=\prod_{\nu=1}^{M}(1+2\pi i\delta_{\nu}\xi)^{-1}\) for \(\delta_{\nu} \in \mathbb{R}\), \(\delta_{\nu} \neq 0\), and \(M \geq 2\), then \(G(g,\alpha,\beta)\) is a frame if and only if \(\alpha\beta < 1\). This result is a first positive contribution to a conjecture of Daubechies from 1990. It also increases the number of known window functions with a complete characterization of lattice parameters from six to uncountable many. Exploiting the connection with Gabor frames, new and sharp sampling theorems for shift-invariant spaces are proved.

MSC:

42C15 General harmonic expansions, frames
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
94A20 Sampling theory in information and communication theory
41A30 Approximation by other special function classes

References:

[1] A. Aldroubi and H. G. Feichtinger, Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces: The \({L}^{p}\)-theory , Proc. Amer. Math. Soc. 126 (1998), 2677-2686. · Zbl 0906.42017 · doi:10.1090/S0002-9939-98-04319-6
[2] A. Aldroubi and K. Gröchenig, Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces , J. Fourier Anal. Appl. 6 (2000), 93-103. · Zbl 0964.42020 · doi:10.1007/BF02510120
[3] A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruction in shift-invariant spaces , SIAM Rev. 43 (2001), 585-620. · Zbl 0995.42022 · doi:10.1137/S0036144501386986
[4] A. Aldroubi, Q. Sun, and W.-S. Tang, Nonuniform average sampling and reconstruction in multiply generated shift-invariant spaces , Constr. Approx. 20 (2004), 173-189. · Zbl 1049.42017 · doi:10.1007/s00365-003-0539-0
[5] M. J. Baastians, Gabor’s expansion of a signal into Gaussian elementary signals , Proc. IEEE 68 (1980), 538-539.
[6] R. Balian, Un principe d’incertitude fort en théorie du signal ou en mécanique quantique , C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre 292 (1981), 1357-1362.
[7] V. Bargmann, P. Butera, L. Girardello, and J. R. Klauder, On the completeness of the coherent states , Rep. Math. Phys. 2 (1971), 221-228. · doi:10.1016/0034-4877(71)90006-1
[8] J. J. Benedetto, C. Heil, and D. F. Walnut, Differentiation and the Balian-Low theorem , J. Fourier Anal. Appl. 1 (1995), 355-402. · Zbl 0887.42026 · doi:10.1007/s00041-001-4016-5
[9] K. Bittner and C. K. Chui, “Gabor frames with arbitrary windows” in Approximation Theory, X (St. Louis, 2001) , Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, Tenn., 2002, 41-50. · Zbl 1029.42027
[10] C. Cabrelli, K. Gröchenig, and U. Molter,
[11] O. Christensen, An Introduction to Frames and Riesz Bases , Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2003. · Zbl 1017.42022
[12] W. Czaja and A. M. Powell, “Recent developments in the Balian-Low theorem” in Harmonic Analysis and Applications , Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2006, 79-100. · Zbl 1129.42410 · doi:10.1007/0-8176-4504-7_5
[13] I. Daubechies, The wavelet transform, time-frequency localization and signal analysis , IEEE Trans. Inform. Theory 36 (1990), 961-1005. · Zbl 0738.94004 · doi:10.1109/18.57199
[14] I. Daubechies, Ten Lectures on Wavelets , CBMS-NSF Regional Conf. Ser. in Appl. Math. 61 , Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1992.
[15] I. Daubechies and A. Grossmann, Frames in the Bargmann space of entire functions , Comm. Pure Appl. Math. 41 (1988), 151-164. · Zbl 0632.30049 · doi:10.1002/cpa.3160410203
[16] I. Daubechies, A. Grossmann, and Y. Meyer, Painless nonorthogonal expansions , J. Math. Phys. 27 (1986), 1271-1283. · Zbl 0608.46014 · doi:10.1063/1.527388
[17] V. Del Prete, Estimates, decay properties, and computation of the dual function for Gabor frames , J. Fourier Anal. Appl. 5 (1999), 545-562. · Zbl 0948.42024 · doi:10.1007/BF01257190
[18] H. G. Feichtinger and K. Gröchenig, Gabor frames and time-frequency analysis of distributions , J. Funct. Anal. 146 (1997), 464-495. · Zbl 0887.46017 · doi:10.1006/jfan.1996.3078
[19] H. G. Feichtinger and N. Kaiblinger, Varying the time-frequency lattice of Gabor frames , Trans. Amer. Math. Soc. 356 (2004), 2001-2023. · Zbl 1033.42033 · doi:10.1090/S0002-9947-03-03377-4
[20] D. Gabor, Theory of communication , J. IEE (London) 93 (1946), 429-457.
[21] K. Gröchenig, An uncertainty principle related to the Poisson summation formula , Studia Math. 121 (1996), 87-104. · Zbl 0866.42005
[22] K. Gröchenig, Foundations of Time-Frequency Analysis , Birkhäuser, Boston, 2001. · Zbl 0966.42020
[23] K. Gröchenig, Time-frequency analysis of Sjöstrand’s class , Rev. Mat. Iberoam. 22 (2006), 703-724. · Zbl 1127.35089 · doi:10.4171/RMI/471
[24] K. Gröchenig and M. Leinert, Wiener’s lemma for twisted convolution and Gabor frames , J. Amer. Math. Soc. 17 (2004), 1-18. · Zbl 1037.22012 · doi:10.1090/S0894-0347-03-00444-2
[25] K. Gröchenig and Y. Lyubarskii, Gabor (super)frames with Hermite functions , Math. Ann. 345 (2009), 267-286. · Zbl 1184.42025 · doi:10.1007/s00208-009-0350-8
[26] C. Heil, History and evolution of the density theorem for Gabor frames , J. Fourier Anal. Appl. 13 (2007), 113-166. · Zbl 1133.42043 · doi:10.1007/s00041-006-6073-2
[27] C. Heil, “Integral operators, pseudodifferential operators, and Gabor frames” in Advances in Gabor Analysis , Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2003, 153-169. · Zbl 1036.42030 · doi:10.1007/978-1-4612-0133-5_7
[28] A. J. E. M. Janssen, Gabor representation of generalized functions , J. Math. Anal. Appl. 83 (1981), 377-394. · Zbl 0473.46028 · doi:10.1016/0022-247X(81)90130-X
[29] A. J. E. M. Janssen, Bargmann transform, Zak transform, and coherent states , J. Math. Phys. 23 (1982), 720-731. · Zbl 0486.46027 · doi:10.1063/1.525426
[30] A. J. E. M. Janssen, Signal analytic proofs of two basic results on lattice expansions , Appl. Comput. Harmon. Anal. 1 (1994), 350-354. · Zbl 0834.42019 · doi:10.1006/acha.1994.1021
[31] A. J. E. M. Janssen, Some counterexamples in the theory of Weyl-Heisenberg frames , IEEE Trans. Inform. Theory 42 (1996), 621-623. · Zbl 0849.42024 · doi:10.1109/18.485730
[32] A. J. E. M. Janssen, Some Weyl-Heisenberg frame bound calculations , Indag. Math. (N.S.) 7 (1996), 165-183. · Zbl 1056.42512 · doi:10.1016/0019-3577(96)85088-9
[33] A. J. E. M. Janssen, On generating tight Gabor frames at critical density , J. Fourier Anal. Appl. 9 (2003), 175-214. · Zbl 1024.42018 · doi:10.1007/s00041-003-0011-3
[34] A. J. E. M. Janssen, “Zak transforms with few zeros and the tie” in Advances in Gabor Analysis , Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2003, 31-70. · Zbl 1027.42025 · doi:10.1007/978-1-4612-0133-5_3
[35] A. J. E. M. Janssen and T. Strohmer, Hyperbolic secants yield Gabor frames , Appl. Comput. Harmon. Anal. 12 (2002), 259-267. · Zbl 1005.42021 · doi:10.1006/acha.2001.0376
[36] S. Karlin, Total Positivity, Vol. I , Stanford Univ. Press, Stanford, Calif., 1968. · Zbl 0219.47030
[37] H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions , Acta Math. 117 (1967), 37-52. · Zbl 0154.15301 · doi:10.1007/BF02395039
[38] F. Low, “Complete sets of wave packets” in A Passion for Physics-Essay in Honor of Geoffrey Chew , World Scientific, Singapore, 1985, 17-22.
[39] F. Luef, Projective modules over noncommutative tori are multi-window Gabor frames for modulation spaces , J. Funct. Anal. 257 (2009), 1921-1946. · Zbl 1335.46064 · doi:10.1016/j.jfa.2009.06.001
[40] Y. I. Lyubarskii, “Frames in the Bargmann space of entire functions” in Entire and Subharmonic Functions , Adv. Soviet Math. 11 , Amer. Math. Soc., Providence, 1992, 167-180. · Zbl 0770.30025
[41] J. V. Neumann, Mathematische Grundlagen der Quantenmechanik , Springer, Berlin, 1932; English translation: “Mathematical foundations of quantum mechanics,” Princeton Univ. Press, 1955. · JFM 58.0929.06
[42] A. M. Perelomov, Remark on the completeness of the coherent state system (in Russian), Teoret. Mat. Fiz. 6 (1971), 213-224; English translation in Theoret. and Math. Phys. 6 (1971), 156-164.
[43] M. A. Rieffel, Projective modules over higher-dimensional noncommutative tori , Canad. J. Math. 40 (1988), 257-338. · Zbl 0663.46073 · doi:10.4153/CJM-1988-012-9
[44] A. Ron and Z. Shen, Weyl-Heisenberg frames and Riesz bases in \({L}_{2}({\mathbb{R}}^{d})\) , Duke Math. J. 89 (1997), 237-282. · Zbl 0892.42017 · doi:10.1215/S0012-7094-97-08913-4
[45] I. J. Schoenberg, On totally positive functions, Laplace integrals and entire functions of the Laguerre-Pólya-Schur type , Proc. Natl. Acad. Sci. USA 33 (1947), 11-17. · Zbl 0029.36601 · doi:10.1073/pnas.33.1.11
[46] I. J. Schoenberg, On Pólya frequency functions, I: The totally positive functions and their Laplace transforms , J. Anal. Math. 1 (1951), 331-374. · Zbl 0045.37602 · doi:10.1007/BF02790092
[47] I. J. Schoenberg and A. Whitney, On Pólya frequence functions, III: The positivity of translation determinants with an application to the interpolation problem by spline curves , Trans. Amer. Math. Soc. 74 (1953), 246-259. · Zbl 0051.33606 · doi:10.2307/1990881
[48] L. L. Schumaker, Spline Functions: Basic Theory , John Wiley, New York, 1981. · Zbl 0449.41004
[49] K. Seip, Density theorems for sampling and interpolation in the Bargmann-Fock space, I , J. Reine Angew. Math. 429 (1992), 91-106. · Zbl 0745.46034 · doi:10.1515/crll.1992.429.91
[50] T. Strohmer, Approximation of dual Gabor frames, window decay, and wireless communications , Appl. Comput. Harmon. Anal. 11 (2001), 243-262. · Zbl 0986.42018 · doi:10.1006/acha.2001.0357
[51] D. F. Walnut, Continuity properties of the Gabor frame operator , J. Math. Anal. Appl. 165 (1992), 479-504. · Zbl 0763.47014 · doi:10.1016/0022-247X(92)90053-G
[52] J. Xian and S. Li, Sampling set conditions in weighted multiply generated shift-invariant spaces and their applications , Appl. Comput. Harmon. Anal. 23 (2007), 171-180. · Zbl 1135.42013 · doi:10.1016/j.acha.2006.10.004
[53] A. Zeira and B. Friedlander, “Gabor representation and signal detection” in Gabor Analysis and Algorithms: Theory and Applications , Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 1998, 353-380. · Zbl 0890.42016 · doi:10.1007/978-1-4612-2016-9_12
[54] A. Zygmund, Trigonometric Series, Vols. I, II , 3rd ed., Cambridge Univ. Press, Cambridge, 2002. · Zbl 0367.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.