×

Wigner chaos and the fourth moment. (English) Zbl 1277.46033

The main theorem of this paper is the following central limit theorem (CLT) in the free context, analogous to CLT in the ordinary probabilistic setting (see, e.g., [D. Nualart and G. Peccati, Ann.Probab.33, No. 1, 177–193 (2005; Zbl 1097.60007)]).
{ Theorem A.} Let \(n \geq 2\) and let \(( f_k )_{k \in {\mathbb N}}\) be a sequence of mirror symmetric functions in \(L^2( {\mathbb R}_+^n)\) with \(\| f_k \|_{ L^2( {\mathbb R}_+^n)} = 1\). The following statements are equivalent.
(1)
The fourth moments of the Wigner stochastic integrals \(I_n^S(f_k)\) (with respect to a free Brownian motion \(( S_t )_{ t \geq 0 }\)) converge to 2, i.e., \[ \lim_{k \to \infty} {\mathbb E} [ I_n^S( f_k)^4 ] = 2. \]
(2)
The random variables \(I_n^S(f_k)\) converge in law to the standard semicircular distribution \(S(0,1)\) as \(k \to \infty\).
The proof of Theorem A is through the method of moments which, in the context of the Wigner chaos, is elegantly formulated in terms of noncrossing pairings and partitions. As a matter of fact, a key step toward proving Theorem A is the following characterization result of the fourth moment condition in terms of standard integral contraction operators on the kernels of the stochastic integrals.
{Theorem B.} Let \(n \in {\mathbb N}\), and let \(( f_k )_{k \in {\mathbb N} }\) be a sequence of functions in \(L^2( {\mathbb R}_+^n)\) with \(\| f_k \|_{ L^2( {\mathbb R}_+^n )}\) \(=\) \(1\). The following statements are equivalent.
(1)
The fourth absolute moments of the stochastic integrals \(I_n^S( f_k)\) converge to 2, i.e., \[ \lim_{k \to \infty} {\mathbb E} [ | I_n^S( f_k) |^4 ] = 2. \]
(2)
All nontrivial contractions of \(f_k\) converge to 0: for each \(p=1,2, \dots, n-1\), \[ \lim_{ k \to \infty} f_k \overset {p} {\frown} f_k^* = 0 \quad \text{in} \quad L^2( {\mathbb R}_+^{2n - 2p} ), \] where the \(p\)-th contraction \(f \overset {p} {\frown} g\) of \(f \in L^2( {\mathbb R}_+^n )\) and \(g \in L^2( {\mathbb R}_+^m)\) is the \(L^2(\) \({\mathbb R}_+^{n + m - 2p})\) function defined by nested integration of the middle \(p\) variables in \(f \otimes g\).
By making use of Theorem A together with Theorem B, the authors prove the Wiener-Wigner transfer principle for translating results between the classical and free chaoses.
{Theorem C.} (Wiener-Wigner transfer principle) Let \(n \geq 2\), and let \(( f_k )_{k \in {\mathbb N}}\) be a sequence of fully symmetric functions in \(L^2( {\mathbb R}_+^n)\). Let \(\sigma > 0\) be a finite constant. Then, as \(k \to \infty\):
(1)
\({\mathbb E} [ I_n^W( f_k)^2 ]\) \(\to\) \(n! \sigma^2\) if and only if \({\mathbb E} [ I_n^S ( f_k)^2 ]\) \(\to\) \(\sigma^2\), where \(I_n^W( f)\) denotes the \(n\)-th multiple Wiener-Itô stochastic integral of \(f\) with respect to a standard one-dimensional Brownian motion \(( W_t)_{t > 0}\).
(2)
If the asymptotic relations in (1) are satisfied, then \((I_n^W(f_k))\) converges in law to a normal random variable \(N(0, n! \sigma^2)\) if and only if \((I_n^S(f_k))\) converges in law to a semicircular random variable \(S(0, \sigma^2)\), where the probability distribution \(S(0, \sigma^2)(dx)\) is given by \((2 \pi \sigma^2)^{-1} \sqrt{ 4 \sigma^2 - x^2} dx\) for \(| x | \leqslant 2 \sigma\).
This transfer principle yields immediately a free analog of the Breuer-Major theorem for stationary vectors. Namely,
{ Corollary D.} (Free Breuer-Major theorem) Let \((X_k)_{k \in {\mathbb Z}}\) be a doubly-infinite semicircular system of random variables \(S(0,1)\), and let \(\rho(k)\) \(=\) \(\varphi(X_0 X_k)\) denote the covariance function with \(X_0\). Suppose that there is an integer \(n \geq 1\) such that \[ \sum_{ k \in {\mathbb Z} } | f(k) |^n < \infty. \] Then the sequence \[ V_m = \frac{1}{ \sqrt{m} } \sum_{k=0}^{m-1} U_n ( X_k) \quad \overset {\text{law}} {\longrightarrow} \quad S(0, \sigma^2) \] as \(m \to \infty\), where \(\sigma^2 = \sum_{k \in {\mathbb Z} } \rho(k)^n\), and \(U_n\) is the \(n\)-th Chebyshev polynomial of the second kind.
Another peculiar key point consists in proving some sharp quantitative estimates for the distance to the semicircular law (see below). The key estimate can be obtained by employing Malliavin calculus.
{ Theorem E.} (Key estimate) Let \(S\) be a standard semicircular random variable. Let \(F\) have a finite Wigner chaos expansion, namely, \[ F = \sum_{n=1}^N I_n^S(f_n) \] for some mirror symmetric functions \(f_n \in L^2( {\mathbb R}_+^n)\) and some finite \(N\). When \(h\) has a Fourier expansion as \[ h(x) = \hat{\nu}(x) = \int_{ {\mathbb R} } e^{i x \xi} \nu( d \xi), \] then a seminorm \({\mathcal J}_2(h)\) is defined as \[ {\mathcal J}_2(h) = \int_{ {\mathbb R}} \xi^2 | \nu |( d \xi), \] and \({\mathcal C}_2\) denotes the set of functions \(h\) with \({\mathcal J}_2(h) < \infty\). Then \[ \begin{aligned} d_{ {\mathcal C}_2 } ( F, S) &\equiv \sup _{\substack{ h \in {\mathcal C}_2 \\ {\mathcal J}_2(h) \leqslant 1 }} | {\mathbb E} [ h(F) ] - {\mathbb E} [ h(S) ] | \\ &\leqslant \frac{1}{2} {\mathbb E} \otimes {\mathbb E} \left( \left| \int_0^{\infty} \nabla_t ( N_0^{-1} F) \sharp ( \nabla_t F)^* dt - 1 \otimes 1 \right| \right). \end{aligned} \]
Here \(\nabla\) is the free Cameron-Gross-Malliavin derivative, \(N_0 \equiv \delta \nabla\) is the free Ornstein-Uhlenbeck operator (or free number operator) with the divergence operator \(\delta\), and \(\sharp\) is the product on tensor-product-valued biprocesses in free Malliavin calculus (cf. [P. Biane, Commun.Math.Phys.184, No. 2, 457–474 (1997; Zbl 0874.46049)] and [I. Nourdin and G. Peccati, Normal approximations with Malliavin calculus. From Stein’s method to universality. Cambridge: Cambridge University Press (2012; Zbl 1266.60001)]). For other related works see, e.g., [I. Nourdin and G. Peccati, Interdisciplinary Mathematical Sciences 8, 207–236 (2010; Zbl 1203.60065)]. Especially for Stein’s method, see [I. Nourdin and G. Peccati, Probab.Theory Relat.Fields 145, No. 1–2, 75–118 (2009; Zbl 1175.60053)], and as to some examples of Malliavin calculus applied to central limit theorems, see [D. Nualart and S. Ortiz-Latorre, Stochastic Processes.Appl.118, No. 4, 614–628 (2008; Zbl 1142.60015)].

MSC:

46L54 Free probability and free operator algebras
60H07 Stochastic calculus of variations and the Malliavin calculus
60H30 Applications of stochastic analysis (to PDEs, etc.)

References:

[1] Anderson, G. W., Guionnet, A. and Zeitouni, O. (2010). An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics 118 . Cambridge Univ. Press, Cambridge. · Zbl 1184.15023
[2] Anshelevich, M. (2000). Free stochastic measures via noncrossing partitions. Adv. Math. 155 154-179. · Zbl 0978.46041 · doi:10.1006/aima.2000.1936
[3] Anshelevich, M. (2001). Partition-dependent stochastic measures and \(q\)-deformed cumulants. Doc. Math. 6 343-384 (electronic). · Zbl 1010.46064
[4] Anshelevich, M. (2002). Free stochastic measures via noncrossing partitions. II. Pacific J. Math. 207 13-30. · Zbl 1059.46047 · doi:10.2140/pjm.2002.207.13
[5] Biane, P. (1997). Free hypercontractivity. Comm. Math. Phys. 184 457-474. · Zbl 0874.46049 · doi:10.1007/s002200050068
[6] Biane, P. (1998). Processes with free increments. Math. Z. 227 143-174. · Zbl 0902.60060 · doi:10.1007/PL00004363
[7] Biane, P., Capitaine, M. and Guionnet, A. (2003). Large deviation bounds for matrix Brownian motion. Invent. Math. 152 433-459. · Zbl 1017.60026 · doi:10.1007/s00222-002-0281-4
[8] Biane, P. and Speicher, R. (1998). Stochastic calculus with respect to free Brownian motion and analysis on Wigner space. Probab. Theory Related Fields 112 373-409. · Zbl 0919.60056 · doi:10.1007/s004400050194
[9] Biane, P. and Speicher, R. (2001). Free diffusions, free entropy and free Fisher information. Ann. Inst. H. Poincaré Probab. Statist. 37 581-606. · Zbl 1020.46018 · doi:10.1016/S0246-0203(00)01074-8
[10] Biane, P. and Voiculescu, D. (2001). A free probability analogue of the Wasserstein metric on the trace-state space. Geom. Funct. Anal. 11 1125-1138. · Zbl 1020.46020 · doi:10.1007/s00039-001-8226-4
[11] Capitaine, M. and Donati-Martin, C. (2005). Free Wishart processes. J. Theoret. Probab. 18 413-438. · Zbl 1084.46051 · doi:10.1007/s10959-005-3511-z
[12] Demni, N. (2008). Free Jacobi process. J. Theoret. Probab. 21 118-143. · Zbl 1145.46041 · doi:10.1007/s10959-007-0110-1
[13] Gao, M. (2006). Free Ornstein-Uhlenbeck processes. J. Math. Anal. Appl. 322 177-192. · Zbl 1110.46041 · doi:10.1016/j.jmaa.2005.09.013
[14] Guionnet, A. and Shlyakhtenko, D. (2009). Free diffusions and matrix models with strictly convex interaction. Geom. Funct. Anal. 18 1875-1916. · Zbl 1187.46056 · doi:10.1007/s00039-009-0704-0
[15] Haagerup, U. (1978/79). An example of a nonnuclear \(C^{\ast}\)-algebra, which has the metric approximation property. Invent. Math. 50 279-293. · Zbl 0408.46046 · doi:10.1007/BF01410082
[16] Hiai, F. and Petz, D. (2000). The Semicircle Law , Free Random Variables and Entropy. Mathematical Surveys and Monographs 77 . Amer. Math. Soc., Providence, RI. · Zbl 0955.46037
[17] Janson, S. (1997). Gaussian Hilbert Spaces. Cambridge Tracts in Mathematics 129 . Cambridge Univ. Press, Cambridge. · Zbl 0887.60009
[18] Kümmerer, B. and Speicher, R. (1992). Stochastic integration on the Cuntz algebra \(O_\infty \). J. Funct. Anal. 103 372-408. · Zbl 0787.46052 · doi:10.1016/0022-1236(92)90126-4
[19] Kuo, H.-H. (2006). Introduction to Stochastic Integration . Springer, New York. · Zbl 1101.60001
[20] Major, P. (1981). Multiple Wiener-Itô Integrals : With Applications to Limit Theorems. Lecture Notes in Math. 849 . Springer, Berlin. · Zbl 0451.60002 · doi:10.1007/BFb009403
[21] Nica, A. and Speicher, R. (2006). Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series 335 . Cambridge Univ. Press, Cambridge. · Zbl 1133.60003
[22] Nourdin, I. and Peccati, G. (2009). Stein’s method on Wiener chaos. Probab. Theory Related Fields 145 75-118. · Zbl 1175.60053 · doi:10.1007/s00440-008-0162-x
[23] Nourdin, I. and Peccati, G. (2010). Stein’s method meets Malliavin calculus: A short survey with new estimates. Interdiscip. Math. Sci. 8 207-236. · Zbl 1203.60065 · doi:10.1142/9789814277266_0014
[24] Nourdin, I. and Peccati, G. (2012). Normal Approximations with Malliavin Calculus : From Stein’s Method to Universality . Cambridge Univ. Press, Cambridge. · Zbl 1266.60001
[25] Nourdin, I., Peccati, G. and Podolskij, M. (2011). Quantitative Breuer-Major theorems. Stochastic Process. Appl. 121 793-812. · Zbl 1225.60045 · doi:10.1016/j.spa.2010.12.006
[26] Nourdin, I., Peccati, G. and Reinert, G. (2010). Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos. Ann. Probab. 38 1947-1985. · Zbl 1246.60039 · doi:10.1214/10-AOP531
[27] Nualart, D. (2006). The Malliavin Calculus and Related Topics , 2nd ed. Springer, Berlin. · Zbl 1099.60003
[28] Nualart, D. and Ortiz-Latorre, S. (2008). Central limit theorems for multiple stochastic integrals and Malliavin calculus. Stochastic Process. Appl. 118 614-628. · Zbl 1142.60015 · doi:10.1016/j.spa.2007.05.004
[29] Nualart, D. and Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 177-193. · Zbl 1097.60007 · doi:10.1214/009117904000000621
[30] Parthasarathy, K. R. (1992). An Introduction to Quantum Stochastic Calculus. Monographs in Mathematics 85 . Birkhäuser, Basel. · Zbl 0751.60046
[31] Peccati, G. and Taqqu, M. S. (2010). Wiener Chaos : Moments , Cumulants and Diagrams. A Survey with Computer Implementation . Bocconi Univ. Press, Milano. · Zbl 1231.60003
[32] Rudin, W. (1976). Principles of Mathematical Analysis , 3rd ed. McGraw-Hill, New York. · Zbl 0346.26002
[33] Rüschendorf, L. (2001). Wasserstein metric. In Encyclopaedia of Mathematics (M. Hazewinkel, ed.). Springer, Berlin.
[34] Surgailis, D. (2003). CLTs for polynomials of linear sequences: Diagram formula with illustrations. In Theory and Applications of Long-range Dependence 111-127. Birkhäuser, Boston, MA. · Zbl 1032.60017
[35] Takesaki, M. (1972). Conditional expectations in von Neumann algebras. J. Funct. Anal. 9 306-321. · Zbl 0245.46089 · doi:10.1016/0022-1236(72)90004-3
[36] Talagrand, M. (2003). Mean field models for spin glasses: A first course. In Lectures on Probability Theory and Statistics ( Saint-Flour , 2000). Lecture Notes in Math. 1816 181-285. Springer, Berlin. · Zbl 1042.82001
[37] Voiculescu, D. (1985). Symmetries of some reduced free product \(C^{\ast}\)-algebras. In Operator Algebras and Their Connections with Topology and Ergodic Theory ( BuŞteni , 1983). Lecture Notes in Math. 1132 556-588. Springer, Berlin. · Zbl 0618.46048 · doi:10.1007/BFb0074909
[38] Voiculescu, D. (1991). Limit laws for random matrices and free products. Invent. Math. 104 201-220. · Zbl 0736.60007 · doi:10.1007/BF01245072
[39] Voiculescu, D. (1993). The analogues of entropy and of Fisher’s information measure in free probability theory. I. Comm. Math. Phys. 155 71-92. · Zbl 0781.60006 · doi:10.1007/BF02100050
[40] Voiculescu, D. (2000). The coalgebra of the free difference quotient and free probability. Int. Math. Res. Not. 2 79-106. · Zbl 0952.46038 · doi:10.1155/S1073792800000064
[41] Voiculescu, D. V., Dykema, K. J. and Nica, A. (1992). Free Random Variables : A Noncommutative Probability Approach to Free Products with Applications to Random Matrices , Operator Algebras and Harmonic Analysis on Free Groups. CRM Monograph Series 1 . Amer. Math. Soc., Providence, RI. · Zbl 0795.46049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.