×

Non-commutative varieties with curvature having bounded signature. (English) Zbl 1277.47026

One of the aims of this paper is to introduce a notion of signature of the curvature of the zero set \(V(p)\) of a non-commutative polynomial \(p\) and to prove a lower bound in terms of the degree of the polynomial. It follows that, if the non-commutative variety \(V(p)\) has positive curvature, then the degree of \(p\) is at most two. A new version of a non-commutative analogue of the Hessian of \(p\) is also discussed.

MSC:

47A99 General theory of linear operators
47A63 Linear operator inequalities
14P10 Semialgebraic sets and related spaces
47L07 Convex sets and cones of operators

Software:

NCAlgebra

References:

[1] J. Bochnak, M. Coste and M.-F. Roy, Real algebraic geometry , Springer, Berlin, 1998. · Zbl 0912.14023
[2] J. F. Camino, J. W. Helton, R. E. Skelton and J. Ye, Matrix inequalities: A symbolic procedure to determine convexity automatically , Integral Equations Operator Theory 46 (2003), 399-454. · Zbl 1046.68139 · doi:10.1007/s00020-001-1147-7
[3] H. Dym, J. W. Helton and S. A. McCullough, The Hessian of a non-commutative polynomial has numerous negative eigenvalues , J. Anal. Math. 102 (2007), 29-76. · Zbl 1143.47004 · doi:10.1007/s11854-007-0016-y
[4] H. Dym, J. W. Helton and S. A. McCullough, Irreducible non-commutative defining polynomials for convex sets have degree four or less , Indiana Univ. Math. J. 56 (2007), 1189-1231. · Zbl 1128.47020 · doi:10.1512/iumj.2007.56.2904
[5] H. Dym, J. Greene, J. W. Helton and S. McCullough, Classification of all non-commutative polynomials whose Hessian has negative signature one and a non-commutative second fundamental form , J. Anal. Math. 108 (2009), 19-59. · Zbl 1206.47007 · doi:10.1007/s11854-009-0017-0
[6] J. W. Helton and S. McCullough, Convex non-commutative polynomials have degree two or less , SIAM J. Matrix Anal. 25 (2004), 1124-1139. · Zbl 1102.47009 · doi:10.1137/S0895479803421999
[7] J. W. Helton and S. McCullough, Every free basic semi-algebraic set has an LMI representation , Ann. of Math. (2) 176 (2012), 979-1013. · Zbl 1260.14011 · doi:10.4007/annals.2012.176.2.6
[8] J. W. Helton, S. McCullough and V. Vinnikov, Non-commutative convexity arises from linear matrix inequalities , J. Funct. Anal. 240 (2006), 105-191. · Zbl 1135.47005 · doi:10.1016/j.jfa.2006.03.018
[9] J. W. Helton and M. Putinar, Positive polynomials in scalar and matrix variables, the spectral theorem and optimization , Operator theory, structured matrices, and dilations, Theta Ser. Adv. Math., vol. 7, Theta, Bucharest, 2007, pp. 229-306. · Zbl 1199.47001
[10] D. S. Kalyuzhnyi-Verbovetskiĭ, and V. Vinnikov, Non-commutative positive kernels and their matrix evaluations , Proc. Amer. Math. Soc. 134 (2006), 805-816. · Zbl 1092.47013 · doi:10.1090/S0002-9939-05-08127-X
[11] G. Popescu, Operator theory on non-commutative varieties , Indiana Univ. Math. J. 55 (2006), 389-442. · Zbl 1104.47013 · doi:10.1512/iumj.2006.55.2771
[12] D. Voiculescu, Symmetries arising from free probability theory , Frontiers in number theory, physics, and geometry, vol. I Springer, Berlin, 2006, pp. 231-243. · Zbl 1155.46036 · doi:10.1007/978-3-540-31347-2_6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.