×

Joint distribution of distances in large random regular networks. (English) Zbl 1277.60021

Summary: We study the array of point-to-point distances in random regular graphs equipped with exponential edge lengths. We consider the regime in which the degree is kept fixed while the number of vertices tends to \(\infty\). The marginal distribution of an individual entry is now well understood, thanks to the work of S. Bhamidi et al. [Ann. Appl. Probab. 20, No. 5, 1907–1965 (2010; Zbl 1213.60157)]. The purpose of this note is to show that the whole array, suitably re-centered, converges in the weak sense to an explicit infinite random array. Our proof consists in analyzing the invasion of the network by several mutually exclusive flows emanating from different sources and propagating simultaneously along the edges.

MSC:

60C05 Combinatorial probability
05C80 Random graphs (graph-theoretic aspects)
90B15 Stochastic network models in operations research

Citations:

Zbl 1213.60157
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] Aldous, D. J. (2010). More uses of exchangeability: representations of complex random structures. In Probability and Mathematical Genetics (London Math. Soc. Lecture Notes 378 ), Cambridge University Press, pp. 35-63. · Zbl 1213.60068
[2] Aldous, D. J. and Bhamidi, S. (2010). Edge flows in the complete random-lengths network. Random Structures Algorithms 37 , 271-311. · Zbl 1209.05115
[3] Amini, A. and Lelarge, M. (2011). The diameter of weighted random graphs. Preprint. Available at http://arXiv.org/abs/1112.6330v1. · Zbl 1351.60009
[4] Antunović, T., Dekel, Y., Mossel, E. and Peres, Y. (2011). Competing first passage percolation on random regular graphs. Preprint. Available at http://arXiv.org/abs/1109.2575v1. · Zbl 1368.05131
[5] Athreya, K. B. and Ney, P. E. (2004). Branching Processes . Dover Publications, Mineola, NY. · Zbl 1070.60001
[6] Bhamidi, S. (2008). First passage percolation on locally treelike networks. I. Dense random graphs. J. Math. Phys. 49 , 125218, 27pp. · Zbl 1159.81304
[7] Bhamidi, S., van der Hofstad, R. and Hooghiemstra, G. (2010). Extreme value theory, Poisson-Dirichlet distributions, and first passage percolation on random networks. Adv. Appl. Prob. 42 , 706-738. · Zbl 1208.60007
[8] Bhamidi, S., van der Hofstad, R. and Hooghiemstra, G. (2010). First passage percolation on random graphs with finite mean degrees. Ann. Appl. Prob. 20 , 1907-1965. · Zbl 1213.60157
[9] Bhamidi, S., van der Hofstad, R. and Hooghiemstra, G. (2011). First passage percolation on the Erdős-Rényi random graph. Combinatorics Prob. Comput. 20 , 683-707. · Zbl 1238.60092
[10] Bhamidi, S., van der Hofstad, R. and Hooghiemstra, G. (2012). Universality for first passage percolation on sparse random graphs. Preprint. Available at http://arXiv.org/abs/1210.6839v1. · Zbl 1213.60157
[11] Bollobás, B. (1980). A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Europ. J. Combinatorics 1 , 311-316. · Zbl 0457.05038
[12] Cox, J. T. and Durrett, R. (1981). Some limit theorems for percolation processes with necessary and sufficient conditions. Ann. Prob. 9 , 583-603. · Zbl 0462.60012
[13] Deijfen, M. and Häggström, O. (2006). The initial configuration is irrelevant for the possibility of mutual unbounded growth in the two-type Richardson model. Combinatorics Prob. Comput. 15 , 345-353. · Zbl 1101.60078
[14] Deijfen, M. and Häggström, O. (2006). Nonmonotonic coexistence regions for the two-type Richardson model on graphs. Electron. J. Prob. 11 , 331-344. · Zbl 1113.60094
[15] Deijfen, M. and Häggström, O. (2007). The two-type Richardson model with unbounded initial configurations. Ann. Appl. Prob. 17 , 1639-1656. · Zbl 1146.60075
[16] Ding, J., Kim, J. H., Lubetzky, E. and Peres, Y. (2010). Diameters in supercritical random graphs via first passage percolation. Combinatorics Prob. Comput. 19 , 729-751. · Zbl 1260.05048
[17] Garet, O. and Marchand, R. (2008). First-passage competition with different speeds: positive density for both species is impossible. Electron. J. Prob. 13 , 2118-2159. · Zbl 1191.60111
[18] Häggström, O. and Pemantle, R. (1998). First passage percolation and a model for competing spatial growth. J. Appl. Prob. 35 , 683-692. · Zbl 0920.60085
[19] Häggström, O. and Pemantle, R. (2000). Absence of mutual unbounded growth for almost all parameter values in the two-type Richardson model. Stochastic Process. Appl. 90 , 207-222. · Zbl 1047.60099
[20] Hoffman, C. (2005). Coexistence for Richardson type competing spatial growth models. Ann. Appl. Prob. 15 , 739-747. · Zbl 1067.60098
[21] Hoffman, C. (2008). Geodesics in first passage percolation. Ann. Appl. Prob. 18 , 1944-1969. · Zbl 1153.60055
[22] Janson, S. (1999). One, two and three times \(\log n/n\) for paths in a complete graph with random weights. Combinatorics Prob. Comput. 8 , 347-361. · Zbl 0934.05115
[23] Janson, S. (2009). The probability that a random multigraph is simple. Combinatorics Prob. Comput. 18 , 205-225. · Zbl 1216.05145
[24] Joseph, A. (2011). The component sizes of a critical random graph with given degree sequence. Preprint. Available at http://arXiv.org/abs/1012.2352v2.
[25] Kesten, H. (1986). Aspects of first passage percolation. In École d’été de Probabilités de Saint-Flour, XIV –1984 (Lecture Notes Math. 1180 ), Springer, Berlin, pp. 125-264. · Zbl 0602.60098
[26] Van der Hofstad, R., Hooghiemstra, G. and Van Mieghem, P. (2001). First-passage percolation on the random graph. Prob. Eng. Inf. Sci. 15 , 225-237. · Zbl 0988.05083
[27] Van der Hofstad, R., Hooghiemstra, G. and Van Mieghem, P. (2005). Distances in random graphs with finite variance degrees. Random Structures Algorithms 27 , 76-123. · Zbl 1074.05083
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.