×

On largest offspring in a critical branching process with finite variance. (English) Zbl 1277.60045

Summary: Continuing our work [J. Appl. Probab. 48, No. 2, 576–582 (2011; Zbl 1223.60020)], we study the distribution of the maximal number \(X^{*}_{k}\) of offspring amongst all individuals in a critical Galton-Watson process started with \(k\) ancestors, treating the case when the reproduction law has a regularly varying tail \(\overline {F}\) with index \(-\alpha \) for \(\alpha >2\) (and, hence, finite variance). We show that \(X^{*}_{k}\) suitably normalized converges in distribution to a Fréchet law with shape parameter \(\alpha /2\); this contrasts sharply with the case \(1< \alpha <2\) for infinite variance. More generally, we obtain a weak limit theorem for the offspring sequence ranked in decreasing order, in terms of atoms of a certain doubly stochastic Poisson measure.

MSC:

60F05 Central limit and other weak theorems
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60G57 Random measures

Citations:

Zbl 1223.60020
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] Athreya, K. B. (1988). On the maximum sequence in a critical branching process. Ann. Prob. 16 , 502-507. · Zbl 0643.60063
[2] Bertoin, J. (2011). On the maximal offspring in a critical branching process with infinite variance. J. Appl. Prob. 48 , 576-582. · Zbl 1223.60020
[3] Borovkov, K. A. and Vatutin, V. A. (1996). On distribution tails and expectations of maxima in critical branching processes. J. Appl. Prob. 33 , 614-622. · Zbl 0869.60077
[4] Dwass, M. (1969). The total progeny in a branching process and a related random walk. J. Appl. Prob. 6 , 682-686. · Zbl 0192.54401
[5] Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York. · Zbl 0996.60001
[6] Lindvall, T. (1976). On the maximum of a branching process. Scand. J. Statist. 3 , 209-214. · Zbl 0344.60050
[7] Pakes, A. G. (1998). Extreme order statistics on Galton-Watson trees. Metrika 47 , 95-117. · Zbl 1092.60505
[8] Pitman, J. (2006). Combinatorial Stochastic Processes. (Lecture Notes Math. 1875 ), Springer, Berlin.
[9] Rahimov, I. and Yanev, G. P. (1999). On maximum family size in branching processes. J. Appl. Prob. 36 , 632-643. · Zbl 0947.60085
[10] Resnick, S. I. (1987). Extreme Values, Regular Variation, and Point Processes. Springer, New York. · Zbl 0633.60001
[11] Vatutin, V. A., Wachtel, V. and Fleischmann, K. (2008). Critical Galton-Watson branching processes: the maximum of the total number of particles within a large window. Theory Prob. Appl. 52 , 470-492. · Zbl 1206.60078
[12] Yanev, G. P. (2007). Revisiting offspring maxima in branching processes. Pliska Stud. Math. Bulgar. 18 , 401-426.
[13] Yanev, G. P. (2008). A review of offspring extremes in branching processes. In Records and Branching Processes , eds M. Ahsanullah and G. P. Yanev, Nova Science, pp. 127-145.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.