×

Sharp inequalities for the Beurling-Ahlfors transform on radial functions. (English) Zbl 1277.60076

For \(p\in[1,2]\), the authors discover the weak \((p,p)\) norm, and recover the strong one, of the Beurling-Ahlfors transform on radial functions, where it essentially reduces to the Hardy operator \[ \Lambda f(t)=t^{-1}\int_0^t f(u)du-f(t). \] They first apply a modification of Burkholder’s method – i.e., calculus of special auxiliary functions – to prove a sharp martingale inequality \[ \operatorname{P}((\Delta X)^*\geq 1)\leq c_p\|X\|_p^p, \] where \((\Delta X)^*\) is the maximal function of the jump process \(\Delta X\) of the continuous-time martingale \(X\). Finally, they obtain \[ |\Lambda f(t)|=|\Delta X_t| \] for the (reverse) martingale \(X_t=\operatorname{E}[f|\mathcal{F}_t]\) relative to \(\mathcal{F}_t=\sigma([0,t),\mathcal{B}[t,\infty))\).

MSC:

60G44 Martingales with continuous parameter
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)

References:

[1] A. Baernstein II and S. J. Montgomery-Smith, “Some conjectures about integral means of \(\partial f\) and \(\overline{\partial}f\)” in Complex Analysis and Differential Equations (Uppsala, Sweden, 1997) , Acta Univ. Upsaliensis Univ. C Organ. Hist. 64 , Uppsala Univ. Press, Uppsala, Sweden, 1999, 92-109. · Zbl 0966.30001
[2] R. Bañuelos, The foundational inequalities of D. L. Burkholder and some of their ramifications , Illinois J. Math. 54 (2010), 789-868. · Zbl 1259.60047
[3] R. Bañuelos and P. Janakiraman, \(L_{p}\)-bounds for the Beurling-Ahlfors transform , Trans. Amer. Math. Soc. 360 (2008), 3603-3612. · Zbl 1220.42012 · doi:10.1090/S0002-9947-08-04537-6
[4] R. Bañuelos and P. Janakiraman, On the weak-type constant of the Beurling-Ahlfors transform , Michigan Math. J. 58 (2009), 239-257. · Zbl 1184.42004 · doi:10.1307/mmj/1250169072
[5] A. Borichev, P. Janakiraman, and A. Volberg, Subordination by conformal martingales in \(L^{p}\) and zeros of Laguerre polynomials , to appear in Duke Math. J. 162 , preprint, [math.PR]. 1012.0943v3 · Zbl 1266.32006
[6] D. L. Burkholder, Boundary value problems and sharp inequalities for martingale transforms , Ann. Probab. 12 (1984), 647-702. · Zbl 0556.60021 · doi:10.1214/aop/1176993220
[7] D. L. Burkholder, “Explorations in martingale theory and its applications” in École d’Eté de Probabilités de Saint-Flour XIX-1989 , Lecture Notes in Math. 1464 , Springer, Berlin, 1991, 1-66. · Zbl 0771.60033
[8] D. Cox and J. B. H. Kemperman, On a class of martingale inequalities , J. Multivariate Anal. 13 (1983), 328-352. · Zbl 0521.60048 · doi:10.1016/0047-259X(83)90030-1
[9] C. Dellacherie and P. A. Meyer, Probabilities and Potential B: Theory of Martingales , North-Holland, Amsterdam, 1982. · Zbl 0494.60002
[10] C. Doléans, Variation quadratique des martingales continues à droite , Ann. Math. Statist. 40 (1969), 284-289. · Zbl 0177.21603 · doi:10.1214/aoms/1177697823
[11] J. T. Gill, On the Beurling-Ahlfors transform’s weak-type constant , Michigan Math. J. 59 (2010), 353-363. · Zbl 1196.45015 · doi:10.1307/mmj/1281531461
[12] T. Iwaniec, Extremal inequalities in Sobolev spaces and quasiconformal mappings , Z. Anal. Anwendungen 1 (1982), 1-16. · Zbl 0577.46038
[13] T. Iwaniec, The best constant in a BMO-inequality for the Beurling-Ahlfors transform , Michigan Math. J. 33 (1986), 387-394. · Zbl 0624.42006 · doi:10.1307/mmj/1029003418
[14] O. Lehto, Remarks on the integrability of the derivatives of quasiconformal mappings , Ann. Acad. Sci. Fenn. Series A I Math. 371 (1965), 3-8. · Zbl 0137.05503
[15] A. Ose\ogonek kowski, Weak-type \((p,p)\) inequalities for Fourier multipliers ,
[16] P. E. Protter. Stochastic Integration and Differential Equations , 2nd ed., Applications of Math. 21 , Springer, Berlin, 2004. · Zbl 1041.60005
[17] E. M. Stein, Singular integrals and Differentiability Properties of Functions , Princeton Univ. Press, Princeton, 1970. · Zbl 0207.13501
[18] A. Volberg, Ahlfors-Beurling operator on radial functions , preprint, [math.CA]. 1203.2291v1
[19] G. Wang, Differential subordination and strong differential subordination for continuous-time martingales and related sharp inequalities , Ann. Probab. 23 (1995), 522-551. · Zbl 0832.60055 · doi:10.1214/aop/1176988278
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.