Robust \(T\)-optimal discriminating designs. (English) Zbl 1277.62188

Summary: This paper considers the problem of constructing optimal discriminating experimental designs for competing regression models on the basis of the \(T\)-optimality criterion introduced by A.C. Atkinson and V.V. Fedorov [Biometrika 6, 57–70 (1975; Zbl 0308.62071)]. \(T\)-optimal designs depend on unknown model parameters and it is demonstrated that these designs are sensitive with respect to misspecification. As a solution to this problem we propose a Bayesian and a standardized maximin approach to construct robust and efficient discriminating designs on the basis of the \(T\)-optimality criterion. It is shown that the corresponding Bayesian and standardized maximin optimality criteria are closely related to linear optimality criteria. For the problem of discriminating between two polynomial regression models which differ in the degree by two the robust \(T-\)optimal discriminating designs can be found explicitly. The results are illustrated in several examples.


62K05 Optimal statistical designs
62K25 Robust parameter designs
65C60 Computational problems in statistics (MSC2010)


Zbl 0308.62071
Full Text: DOI arXiv Euclid


[1] Asprey, S. P. and Macchietto, S. (2000). Statistical tools for optimal dynamic model building. Computers and Chemical Engineering 24 1261-1267.
[2] Atkinson, A. C. (2010). The non-uniqueness of some designs for discriminating between two polynomial models in one variable. In MODA 9, Advances in Model-Oriented Design and Analysis 9-16. Springer, Heidelberg.
[3] Atkinson, A. C., Bogacka, B. and Bogacki, M. B. (1998). \(D\)- and \(T\)-optimum designs for the kinetics of a reversible chemical reaction. Chemometrics and Intelligent Laboratory Systems 43 185-198.
[4] Atkinson, A. C. and Fedorov, V. V. (1975a). The design of experiments for discriminating between two rival models. Biometrika 62 57-70. · Zbl 0308.62071
[5] Atkinson, A. C. and Fedorov, V. V. (1975b). Optimal design: Experiments for discriminating between several models. Biometrika 62 289-303. · Zbl 0321.62085
[6] Bretz, F., Pinheiro, J. C. and Branson, M. (2005). Combining multiple comparisons and modeling techniques in dose-response studies. Biometrics 61 738-748. · Zbl 1079.62105
[7] Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: A review. Statist. Sci. 10 273-304. · Zbl 0955.62617
[8] Chernoff, H. (1953). Locally optimal designs for estimating parameters. Ann. Math. Statist. 24 586-602. · Zbl 0053.10504
[9] Cornish-Bowden, A. (1965). Fundamentals of Enzyme Kinetics , rev. ed. Portland Press, London.
[10] Danesi, R., Innocenti, F., Fogli, S., Gennari, A., Baldini, E., Di Paolo, A., Salvadori, B., Bocci, G., Conte, P. F. and Del Tacca, M. (2002). Pharmacokinetics and pharmacodynamics of combination chemotherapy with paclitaxel and epirubicin in breast cancer patients. Br. J. Clin. Pharmacol. 53 508-518.
[11] Dette, H. (1994). Discrimination designs for polynomial regression on compact intervals. Ann. Statist. 22 890-903. · Zbl 0806.62059
[12] Dette, H. (1995). Optimal designs for identifying the degree of a polynomial regression. Ann. Statist. 23 1248-1266. · Zbl 0847.62064
[13] Dette, H. (1997). Designing experiments with respect to “standardized” optimality criteria. J. R. Stat. Soc. Ser. B Stat. Methodol. 59 97-110. · Zbl 0884.62081
[14] Dette, H., Haines, L. M. and Imhof, L. A. (2007). Maximin and Bayesian optimal designs for regression models. Statist. Sinica 17 463-480. · Zbl 1144.62056
[15] Dette, H. and Haller, G. (1998). Optimal designs for the identification of the order of a Fourier regression. Ann. Statist. 26 1496-1521. · Zbl 0930.62075
[16] Dette, H., Melas, V. B. and Wong, W. K. (2005). Optimal design for goodness-of-fit of the Michaelis-Menten enzyme kinetic function. J. Amer. Statist. Assoc. 100 1370-1381. · Zbl 1117.62316
[17] Dette, H., Melas, V. B. and Shpilev, P. (2012). \(T\)-optimal designs for discrimination between two polynomial models. Ann. Statist. 40 188-205. · Zbl 1246.62176
[18] Dette, H. and Studden, W. J. (1997). The Theory of Canonical Moments with Applications in Statistics , Probability , and Analysis . Wiley, New York. · Zbl 0886.62002
[19] Dette, H. and Titoff, S. (2009). Optimal discrimination designs. Ann. Statist. 37 2056-2082. · Zbl 1168.62066
[20] Foo, L. K. and Duffull, S. (2011). Optimal design of pharmacokinetic-pharmacodynamic studies. In Pharmacokinetics in Drug Development , Advances and Applications . Springer, New York.
[21] Gaffke, N. (1987). Further characterizations of design optimality and admissibility for partial parameter estimation in linear regression. Ann. Statist. 15 942-957. · Zbl 0649.62070
[22] Hill, P. D. (1978). A review of experimental design procedures for regression model discrimination. Technometrics 20 15-21. · Zbl 0378.62067
[23] Hunter, W. G. and Reiner, A. M. (1965). Designs for discriminating between two rival models. Technometrics 7 307-323.
[24] Karlin, S. and Studden, W. J. (1966). Tchebycheff Systems : With Applications in Analysis and Statistics. Pure and Applied Mathematics XV . Wiley, New York. · Zbl 0153.38902
[25] Kiefer, J. (1974). General equivalence theory for optimum designs (approximate theory). Ann. Statist. 2 849-879. · Zbl 0291.62093
[26] Müller, C. H. and Pázman, A. (1998). Applications of necessary and sufficient conditions for maximin efficient designs. Metrika 48 1-19. · Zbl 0990.62062
[27] Osborne, M. J. and Rubinstein, A. (1994). A Course in Game Theory . MIT Press, Cambridge, MA. · Zbl 1194.91003
[28] Ponce de Leon, A. C. and Atkinson, A. C. (1991). Optimum experimental design for discriminating between two rival models in the presence of prior information. Biometrika 78 601-608. · Zbl 0741.62073
[29] Pukelsheim, F. and Rieder, S. (1992). Efficient rounding of approximate designs. Biometrika 79 763-770.
[30] Song, D. and Wong, W. K. (1999). On the construction of \(G_{rm}\)-optimal designs. Statist. Sinica 9 263-272. · Zbl 0913.62069
[31] Spruill, M. C. (1990). Good designs for testing the degree of a polynomial mean. Sankhyā Ser. B 52 67-74. · Zbl 0733.62075
[32] Stigler, S. (1971). Optimal experimental design for polynomial regression. J. Amer. Statist. Assoc. 66 311-318. · Zbl 0217.51701
[33] Studden, W. J. (1982). Some robust-type \(D\)-optimal designs in polynomial regression. J. Amer. Statist. Assoc. 77 916-921. · Zbl 0505.62062
[34] Studden, W. J. (1989). Note on some \(\phi_{p}\)-optimal designs for polynomial regression. Ann. Statist. 17 618-623. · Zbl 0675.62047
[35] Szegö, G. (1959). Orthogonal Polynomials , rev. ed. American Mathematical Society Colloquium Publications 23 . Amer. Math. Soc., Providence, RI. · Zbl 0089.27501
[36] Tommasi, C. and López-Fidalgo, J. (2010). Bayesian optimum designs for discriminating between models with any distribution. Comput. Statist. Data Anal. 54 143-150. · Zbl 1284.62481
[37] Uciński, D. and Bogacka, B. (2005). \(T\)-optimum designs for discrimination between two multiresponse dynamic models. J. R. Stat. Soc. Ser. B Stat. Methodol. 67 3-18. · Zbl 1060.62084
[38] Waterhouse, T. H., Woods, D. C., Eccleston, J. A. and Lewis, S. M. (2008). Design selection criteria for discrimination/estimation for nested models and a binomial response. J. Statist. Plann. Inference 138 132-144. · Zbl 1144.62060
[39] Wiens, D. P. (2009). Robust discrimination designs. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 805-829. · Zbl 1248.62132
[40] Wiens, D. P. (2010). Robustness of design for the testing of lack of fit and for estimation in binary response models. Comput. Statist. Data Anal. 54 3371-3378. · Zbl 1284.62492
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.