Volatility occupation times. (English) Zbl 1277.62196

Summary: We propose nonparametric estimators of the occupation measure and the occupation density of the diffusion coefficient (stochastic volatility) of a discretely observed Itô semimartingale on a fixed interval when the mesh of the observation grid shrinks to zero asymptotically. In a first step we estimate the volatility locally over blocks of shrinking length, and then in a second step we use these estimates to construct a sample analogue of the volatility occupation time and a kernel-based estimator of its density. We prove the consistency of our estimators and further derive bounds for their rates of convergence. We use these results to estimate nonparametrically the quantiles associated with the volatility occupation measure.


62M05 Markov processes: estimation; hidden Markov models
62G05 Nonparametric estimation
62P05 Applications of statistics to actuarial sciences and financial mathematics
60H30 Applications of stochastic analysis (to PDEs, etc.)
62G07 Density estimation
62G20 Asymptotic properties of nonparametric inference
Full Text: DOI arXiv Euclid


[1] Bandi, F. M. and Phillips, P. C. B. (2003). Fully nonparametric estimation of scalar diffusion models. Econometrica 71 241-283. · Zbl 1136.62365
[2] Barndorff-Nielsen, O. and Shephard, N. (2004). Power and bipower variation with stochastic volatility and jumps. Journal of Financial Econometrics 2 1-37.
[3] Barndorff-Nielsen, O. E. and Shephard, N. (2006). Econometrics of testing for jumps in financial economics using bipower variation. Journal of Financial Econometrics 4 1-30.
[4] Dassios, A. (1995). The distribution of the quantile of a Brownian motion with drift and the pricing of related path-dependent options. Ann. Appl. Probab. 5 389-398. · Zbl 0837.60076
[5] de Haan, L. and Ferreira, A. (2006). Extreme Value Theory : An Introduction . Springer, New York. · Zbl 1101.62002
[6] Eisenbaum, N. and Kaspi, H. (2007). On the continuity of local times of Borel right Markov processes. Ann. Probab. 35 915-934. · Zbl 1126.60066
[7] Florens-Zmirou, D. (1993). On estimating the diffusion coefficient from discrete observations. J. Appl. Probab. 30 790-804. · Zbl 0796.62070
[8] Geman, D. and Horowitz, J. (1980). Occupation densities. Ann. Probab. 8 1-67. · Zbl 0499.60081
[9] Hall, P. (1992). The Bootstrap and Edgeworth Expansion . Springer, New York. · Zbl 0744.62026
[10] Jacod, J. and Protter, P. (2012). Discretization of Processes. Stochastic Modelling and Applied Probability 67 . Springer, Heidelberg. · Zbl 1259.60004
[11] Jacod, J. and Reiß, M. (2012). A remark on the rates of convergence for integrated volatility estimation in the presence of jumps. Technical report. Available at . 1209.4173v1
[12] Jacod, J. and Rosenbaum, M. (2012). Quarticity and other functionals of volatility: Efficient estimation. Technical report. Available at . 1207.3757 · Zbl 1292.60033
[13] Mancini, C. (2009). Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps. Scand. J. Stat. 36 270-296. · Zbl 1198.62079
[14] Protter, P. E. (2004). Stochastic Integration and Differential Equations : Stochastic Modelling and Applied Probability , 2nd ed. Applications of Mathematics ( New York ) 21 . Springer, Berlin. · Zbl 1041.60005
[15] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion , 3rd ed. Grundlehren der Mathematischen Wissenschaften 293 . Springer, Berlin. · Zbl 0917.60006
[16] Sato, K.-i. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68 . Cambridge Univ. Press, Cambridge. · Zbl 0973.60001
[17] van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3 . Cambridge Univ. Press, Cambridge. · Zbl 0910.62001
[18] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes : With Applications to Statistics . Springer, New York. · Zbl 0862.60002
[19] Yor, M. (1995). The distribution of Brownian quantiles. J. Appl. Probab. 32 405-416. · Zbl 0829.60065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.