Dirichlet characters, Gauss sums, and inverse \(Z\) transform. (English) Zbl 1277.65120

Summary: A generalized Möbius transform is presented. It is based on Dirichlet characters. A general algorithm is developed to compute the inverse \(Z\) transform on the unit circle, and an error estimate is given for the truncated series representation.


65T50 Numerical methods for discrete and fast Fourier transforms
11L05 Gauss and Kloosterman sums; generalizations
Full Text: DOI


[1] H. Bruns, Grundlinien des Wissenschaftlichichnen Rechnens, B. G. Teubner, Leipzig, Germany, 1903.
[2] A. Wintner, An Arithmetical Approach to Ordinary Fourier Series, Waverly Press, Baltimore, Md, USA, 1946. · Zbl 0060.10507
[3] G. Sadasiv, “The arithmetic Fourier transform,” IEEE ASSP Magazine, vol. 5, no. 1, pp. 13-17, 1988. · doi:10.1109/53.662
[4] I. S. Reed, D. W. Tufts, X. Yu, T. K. Truong, M. T. Shih, and X. Yin, “Fourier analysis and signal processing by use of the Mobius inversion formula,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38, no. 3, pp. 458-470, 1990. · Zbl 0701.94001 · doi:10.1109/29.106864
[5] I. S. Reed, M. T. Shih, T. K. Truong, E. Hendon, and D. W. Tufts, “A VLSI architecture for simplified arithmetic Fourier transform algorithm,” IEEE Transactions on Signal Processing, vol. 40, no. 5, pp. 1122-1133, 1992. · Zbl 0755.65143 · doi:10.1109/78.134475
[6] L. Knockaert, “Generalized Mobius transform and arithmetic fourier transforms,” IEEE Transactions on Signal Processing, vol. 42, no. 11, pp. 2967-2971, 1994. · doi:10.1109/78.330357
[7] L. Knockaert, “A generalized möbius transform, arithmetic fourier transforms, and primitive roots,” IEEE Transactions on Signal Processing, vol. 44, no. 5, pp. 1307-1310, 1996. · doi:10.1109/78.502351
[8] J. L. Schiff, T. J. Surendonk, and W. J. Walker, “An algorithm for computing the inverse Z transform,” IEEE Transactions on Signal Processing, vol. 40, no. 9, pp. 2194-2198, 1992. · Zbl 0850.65376 · doi:10.1109/78.157219
[9] C. C. Hsu, I. S. Reed, and T. K. Truong, “Inverse Z-transform by Mobius inversion and the error bounds of aliasing in sampling,” IEEE Transactions on Signal Processing, vol. 42, no. 10, pp. 2823-2830, 1994. · doi:10.1109/78.324746
[10] T. M. Apostol, Introduction to Analytic Number Theory, Springer, New York, NY, USA, 1976. · Zbl 0405.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.