Improving security of the ping-pong protocol. (English) Zbl 1277.94045

Summary: A security layer for the asymptotically secure ping-pong protocol is proposed and analyzed in the paper. The operation of the improvement exploits inevitable errors introduced by the eavesdropping in the control and message modes. Its role is similar to the privacy amplification algorithms known from the quantum key distribution schemes. Messages are processed in blocks which guarantees that an eavesdropper is faced with a computationally infeasible problem as long as the system parameters are within reasonable limits. The introduced additional information preprocessing does not require quantum memory registers and confidential communication is possible without prior key agreement or some shared secret.


94A60 Cryptography
81P94 Quantum cryptography (quantum-theoretic aspects)
94A62 Authentication, digital signatures and secret sharing
Full Text: DOI


[1] Beige A., Englert B.G., Kurtsiefer C., Weinfurter H.: Secure communication with a publicly known key. Act. Phys. Pol. 101(3), 357–368 (2002) · Zbl 1042.94011
[2] Boström K., Felbinger T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)
[3] Boström K., Felbinger T.: On the security of the ping-pong protocol. Phys. Lett. A 372(22), 3953–3956 (2008) · Zbl 1220.81066
[4] Cai Q.Y., Li B.W.: Improving the capacity of the Boström-Felbinger protocol. Phys. Rev. A 69(5), 054301 (2004)
[5] Deng F.G., Long G.L., Liu X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)
[6] Deng F.G., Long G.L., Wang Y., Xiao L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21(11), 2097–2100 (2004)
[7] Fu-Guo D., Gui-Lu L.: Quantum privacy amplification for a sequence of single qubits. Commun. Theor. Phys. 46(3), 443 (2006)
[8] ISO/IEC 9797-1: Information technology–Security techniques–Message Authentication Codes (MACs)-Part 1: Mechanisms using a block cipher (1999)
[9] Long G.L., Liu X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)
[10] Ostermeyer M., Walenta N.: On the implementation of a deterministic secure coding protocol using polarization entangled photons. Opt. Commun. 281(17), 4540–4544 (2008)
[11] Vasiliu E.V.: Non-coherent attack on the ping-pong protocol with completely entangled pairs of qutrits. Quantum Inf. Process. 10, 189–202 (2011) · Zbl 1217.81045
[12] Wang C., Deng F.G., Li Y.S., Liu X.S., Long G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)
[13] Wang C., Deng F.G., Long G.L.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt. Commun. 253(1), 15–20 (2005)
[14] Wójcik A.: Eavesdropping on the ping-pong quantum communication protocol. Phys. Rev. Lett. 90(15), 157901 (2003)
[15] Zawadzki, P.: Security of ping-pong protocol based on pairs of completely entangled qudits. Quantum Inf. Process. pp. 1–12 (2011). doi: 10.1007/s11128-011-0307-1 . http://dx.doi.org/10.1007/s11128-011-0307-1
[16] Zhang Z., Man Z., Li Y.: Improving Wójciks eavesdropping attack on the ping-pong protocol. Phys. Lett. A 333, 46–50 (2004) · Zbl 1123.94371
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.