×

Hyperbolic prime number theorem. (English) Zbl 1278.11089

Summary: We count the number \(S(x)\) of quadruples \((x_1,x_2,x_3,x_4)\in\mathbb Z^4\) for which \[ p = x^2_1 + x^2_2 + x^2_3 + x^2_4 \leq x \] is a prime number and the \(x_i\) satisfying the determinant condition: \(x_1 x_4 - x_2 x_3 = 1\). By means of the sieve, one shows easily the upper bound \(S(x) \ll x / \log x\). Under a hypothesis about prime numbers, which is stronger than the Bombieri-Vinogradov theorem but is weaker than the Elliott-Halberstam conjecture, we prove that this order is correct, that is \(S(x) \gg x / \log x\).

MSC:

11N05 Distribution of primes
11N36 Applications of sieve methods
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bombieri, E., On twin almost primes. Acta Arith., 28 (1975/76), 177–193. · Zbl 0319.10051
[2] Bombieri, E., Friedlander, J. B. & Iwaniec, H., Primes in arithmetic progressions to large moduli. Acta Math., 156 (1986), 203–251. · Zbl 0588.10042
[3] Bourgain, J., Gamburd, A. & Sarnak, P., Sieving and expanders. C. R. Math. Acad. Sci. Paris, 343 (2006), 155–159. · Zbl 1217.11081
[4] Chamizo, F. & Iwaniec, H., On the sphere problem. Rev. Mat. Iberoamericana, 11 (1995), 417–429. · Zbl 0837.11054
[5] Fouvry, É., Autour du théorème de Bombieri–Vinogradov. Acta Math., 152 (1984), 219–244. · Zbl 0552.10024
[6] Heilbronn, H., On the averages of some arithmetical functions of two variables. Mathematika, 5 (1958), 1–7. · Zbl 0125.02604
[7] Iwaniec, H., The half dimensional sieve. Acta Arith., 29 (1976), 69–95. · Zbl 0327.10046
[8] – Spectral Methods of Automorphic Forms. Graduate Studies in Mathematics, 53. Amer. Math. Soc., Providence, RI, 2002. · Zbl 1006.11024
[9] Iwaniec, H. & Kowalski, E., Analytic Number Theory. American Mathematical Society Colloquium Publications, 53. Amer. Math. Soc., Providence, RI, 2004. · Zbl 1059.11001
[10] Smith, R. A., On (n)r(n + a). Proc. Nat. Inst. Sci. India Sect. A, 34 (1968), 132–137. · Zbl 0191.05002
[11] – The circle problem in an arithmetic progression. Canad. Math. Bull., 11 (1968), 175–184. · Zbl 0164.05002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.