# zbMATH — the first resource for mathematics

Extension theorems, non-vanishing and the existence of good minimal models. (English) Zbl 1278.14022
Let $$X$$ be a complex projective manifold (or normal complex projective variety with mild singularities). The aim of the minimal model program is to construct a birational model $$X \dashrightarrow X'$$ such that either $$X'$$ admits a fibration with general fibre a Fano variety or $$X'$$ is a good minimal model, that is some positive multiple of the canonical divisor $$K_{X'}$$ defines a morphism. If $$X$$ is covered by rational curves or $$X$$ is of general type (that is some positive multiple of $$K_X$$ defines a birational map) the minimal model program is completed in the landmark paper by C. Birkar et al., [J. Am. Math. Soc. 23, No. 2, 405–468 (2010; Zbl 1210.14019)]. Thus the main challenge is now to study projective manifolds $$X$$ that are not covered by rational curves and not of general type. By a fundamental result of S. Boucksom et al. [J. Algebr. Geom. 22, No. 2, 201–248 (2013; Zbl 1267.32017)], the canonical divisor $$K_X$$ is then pseudoeffective, that is $$K_X$$ is a limit of effective divisor. However the nonvanishing conjecture claims that some positive multiple of the canonical divisor is actually effective. Once we know that there exists at least one effective pluricanonical divisor $$D$$ one can hope to establish the existence of good minimal models inductively by proving that the restriction morphism $H^0(X, \mathcal O_X(mK_X)) \rightarrow H^0(D, \mathcal O_D(mK_X))$ is surjective for $$m \gg 0$$. A similar extension result played a crucial role in the proof of the existence of flips by C. D. Hacon and J. McKernan [J. Am. Math. Soc. 23, No. 2, 469–490 (2010; Zbl 1210.14021)]. In the paper under review the authors realise an important step of this strategy by proving the following “plt” extension theorem:
Let $$X$$ be a projective manifold and $$S+B$$ a $$\mathbb Q$$-divisor with simple normal crossings such that
1) $$(X,S+B)$$ is plt (i.e. $$S$$ is a prime divisor with $$\mathrm{mult}_S(S+B)=1$$ and $$\lfloor B \rfloor =0$$), and
2) there exists an effective $$\mathbb Q$$-divisor $$D\sim _{\mathbb Q}K_X+S+B$$ such that $S\subset \mathrm{Supp} (D)\subset \mathrm{Supp} (S+B),$ and
3) for any ample divisor $$A$$ and any rational number $$\epsilon >0$$, there is an effective $$\mathbb Q$$-divisor $$D\sim _{\mathbb Q}K_X+S+B+\epsilon A$$ whose support does not contain $$S$$).
Consider $$\pi: \tilde X\to X$$ a log-resolution of $$(X, S+B)$$, so that we have $K_{\tilde X}+ \tilde S+ \tilde B= \pi^*(K_X+S+B)+ \tilde E$ where $$\tilde S$$ is the strict transform of $$S$$. Let $$m$$ be an integer, such that $$m(K_X+S+B)$$ is Cartier, and let $$u$$ be a section of $$m(K_X+S+B)|_S$$, such that $Z_{\pi^*(u)}+ m\tilde E|_{\tilde S}\geq m\Xi,$ where $$Z_{\pi^*(u)}$$ is the zero divisor of the section $$\pi^*(u)$$ and $$\Xi$$ the extension obstruction divisor (cf. [Zbl 1210.14021]). Then $$u$$ extends to $$X$$.
The main achievement of this theorem compared to earlier extension results is that one does not assume $$B$$ to be strictly positive (i.e. ample or big). The authors conjecture that their statement also holds under the weaker assumption that the pair $$(X,S+B)$$ is dlt. This stronger extension result would then reduce the minimal model conjecture to the nonvanishing problem. More precisely the authors prove the following theorem: Suppose that the “dlt” extension theorem holds in dimension $$n$$. Suppose also that the non-vanishing conjecture holds for semi-log-canonical pairs of dimension $$n$$. Then every $$n$$-dimensional projective manifold that is not covered by rational curves has a good minimal model.

##### MSC:
 14E30 Minimal model program (Mori theory, extremal rays) 14J40 $$n$$-folds ($$n>4$$) 32J25 Transcendental methods of algebraic geometry (complex-analytic aspects)
Full Text:
##### References:
  Ambro F.: Nef dimension of minimal models. Math. Ann., 330, 309–322 (2004) · Zbl 1081.14074 · doi:10.1007/s00208-004-0550-1  Ambro F.: The moduli b-divisor of an lc-trivial fibration. Compos. Math., 141, 385–403 (2005) · Zbl 1094.14025 · doi:10.1112/S0010437X04001071  Berndtsson, B., The extension theorem of Ohsawa–Takegoshi and the theorem of Donnelly–Fefferman. Ann. Inst. Fourier (Grenoble), 46 (1996), 1083–1094. · Zbl 0853.32024  Berndtsson, B. & Păun, M., Quantitative extensions of pluricanonical forms and closed positive currents. Nagoya Math. J., 205 (2012), 25–65. · Zbl 1248.32012  Birkar C.: Ascending chain condition for log canonical thresholds and termination of log flips. Duke Math. J., 136, 173–180 (2007) · Zbl 1109.14018 · doi:10.1215/S0012-7094-07-13615-9  Birkar C.: On existence of log minimal models II. J. Reine Angew. Math., 658, 99–113 (2011) · Zbl 1226.14021  Birkar, C., Cascini, P., Hacon, C.D. & McKernan, J., Existence of minimal models for varieties of log general type. J. Amer. Math. Soc., 23 (2010), 405–468. · Zbl 1210.14019  Claudon, B., Invariance for multiples of the twisted canonical bundle. Ann. Inst. Fourier (Grenoble), 57 (2007), 289–300. · Zbl 1122.32013  Corti, A. & Lazić, V., New outlook on the minimal model program, II. Preprint, 2010. arXiv:1005.0614 [math.AG]. · Zbl 1273.14033  Demailly, J.-P., Singular Hermitian metrics on positive line bundles, in Complex Algebraic Varieties (Bayreuth, 1990), Lecture Notes in Math., 1507, pp. 87–104. Springer, Berlin–Heidelberg, 1992.  Demailly, J.-P. On the Ohsawa–Takegoshi–Manivel L 2 extension theorem, in Complex Analysis and Geometry (Paris, 1997), Progr. Math., 188, pp. 47–82. Birkhäuser, Basel, 2000. · Zbl 0959.32019  Demailly, J.-P. Analytic Methods in Algebraic Geometry. Surveys of Modern Mathematics, 1. Int. Press, Somerville, MA, 2012. · Zbl 1271.14001  Ein, L. & Popa,M., Extension of sections via adjoint ideals. Math. Ann., 352 (2012), 373–408. · Zbl 1248.14007  de Fernex, T. & Hacon, C.D., Deformations of canonical pairs and Fano varieties. J. Reine Angew. Math., 651 (2011), 97–126. · Zbl 1220.14026  Fujino, O., Abundance theorem for semi log canonical threefolds. Duke Math. J., 102 (2000), 513–532. · Zbl 0986.14007  Fujino, O. Special termination and reduction to pl flips, in Flips for 3-folds and 4-folds, Oxford Lecture Ser. Math. Appl., 35, pp. 63–75. Oxford Univ. Press, Oxford, 2007. · Zbl 1286.14025  Fujino, O. Fundamental theorems for the log minimal model program. Publ. Res. Inst. Math. Sci., 47 (2011), 727–789. · Zbl 1234.14013  Fukuda, S., Tsuji’s numerically trivial fibrations and abundance. Far East J. Math. Sci. (FJMS), 5 (2002), 247–257. · Zbl 1076.14506  Gongyo, Y., Remarks on the non-vanishing conjecture. Preprint, 2012. arXiv:1201.1128 [math.AG]. · Zbl 1246.14026  Gongyo, Y. & Lehmann, B., Reduction maps and minimal model theory. Preprint, 2011. arXiv:1103.1605 [math.AG]. · Zbl 1264.14025  Hacon, C.D. & Kovács, S. J., Classification of Higher Dimensional Algebraic Varieties. Oberwolfach Seminars, 41. Birkhäuser, Basel, 2010. · Zbl 1204.14001  Hacon, C. D. & McKernan, J., Boundedness of pluricanonical maps of varieties of general type. Invent. Math., 166 (2006), 1–25. · Zbl 1121.14011  Hacon, C. D. & McKernan, J. Existence of minimal models for varieties of log general type. II. J. Amer. Math. Soc., 23 (2010), 469–490. · Zbl 1210.14021  Hacon, C. D., McKernan, J. & Xu, C., ACC for log canonical thresholds. Preprint, 2012. arXiv:1208.4150 [math.AG]. · Zbl 1320.14023  Kawamata, Y., Pluricanonical systems on minimal algebraic varieties. Invent. Math., 79 (1985), 567–588. · Zbl 0593.14010  Kawamata, Y The Zariski decomposition of log-canonical divisors, in Algebraic Geometry, Bowdoin, 1985 (Brunswick, ME, 1985), Proc. Sympos. Pure Math., 46, pp. 425–433. Amer. Math. Soc., Providence, RI, 1987.  Kawamata, Y Abundance theorem for minimal threefolds. Invent. Math., 108 (1992), 229–246. · Zbl 0777.14011  Kawamata, Y On the cone of divisors of Calabi–Yau fiber spaces. Internat. J. Math., 8 (1997), 665–687. · Zbl 0931.14022  Keel, S., Matsuki, K. & McKernan, J., Log abundance theorem for threefolds. Duke Math. J., 75 (1994), 99–119. · Zbl 0818.14007  Klimek, M., Pluripotential Theory. London Mathematical Society Monographs, 6. Oxford University Press, New York, 1991.  Kollár, J. & Mori, S., Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics, 134. Cambridge University Press, Cambridge, 1998. · Zbl 0926.14003  Kollár, J. (ed.), Flips and Abundance for Algebraic Threefolds (Salt Lake City, UT, 1991). Astérisque, 211. Société Mathématique de France, Paris, 1992.  Lai, C.-J., Varieties fibered by good minimal models. Math. Ann., 350 (2011), 533– 547. · Zbl 1221.14018  Lelong, P., Fonctions plurisousharmoniques et formes différentielles positives. Gordon & Breach, Paris, 1968. · Zbl 0195.11603  Lelong, P. Éléments extrémaux dans le côone des courants positifs fermés de type (1, 1) et fonctions plurisousharmoniques extrémales. C. R. Acad. Sci. Paris Sér. A-B, 273 (1971), A665–A667.  Manivel, L., Un théorème de prolongement L 2 de sections holomorphes d’un fibré hermitien. Math. Z., 212 (1993), 107–122. · Zbl 0789.32015  McNeal, J. D. & Varolin, D., Analytic inversion of adjunction: L 2 extension theorems with gain. Ann. Inst. Fourier (Grenoble), 57 (2007), 703–718. · Zbl 1208.32011  Miyaoka, Y., Abundance conjecture for 3-folds: case v = 1. Compos. Math., 68 (1988), 203–220. · Zbl 0681.14019  Nakayama, N., Zariski-Decomposition and Abundance. MSJ Memoirs, 14. Mathematical Society of Japan, Tokyo, 2004. · Zbl 1061.14018  Ohsawa, T., On the extension of L 2 holomorphic functions. VI. A limiting case, in Explorations in Complex and Riemannian Geometry, Contemp. Math., 332, pp. 235–239. Amer. Math. Soc., Providence, RI, 2003. · Zbl 1049.32010  Ohsawa, T. Generalization of a precise L 2 division theorem, in Complex Analysis in Several Variables, Adv. Stud. Pure Math., 42, pp. 249–261. Math. Soc. Japan, Tokyo, 2004. · Zbl 1078.32004  Ohsawa, T. & Takegoshi, K., On the extension of L 2 holomorphic functions. Math. Z., 195 (1987), 197–204. · Zbl 0625.32011  Păun, M., Siu’s invariance of plurigenera: a one-tower proof. J. Differential Geom., 76 (2007), 485–493. · Zbl 1122.32014  Păun, M. Relative critical exponents, non-vanishing and metrics with minimal singularities. Invent. Math., 187 (2012), 195–258. · Zbl 1251.32018  Shokurov, V. V., Letters of a bi-rationalist. VII. Ordered termination. Tr. Mat. Inst. Steklova, 264 (2009), 184–208 (Russian); English translation in Proc. Steklov Inst. Math., 264 (2009), 178–200. · Zbl 1312.14041  Siu, Y.-T., Analyticity of sets associated to Lelong numbers and the extension of closed positive currents. Invent. Math., 27 (1974), 53–156. · Zbl 0289.32003  Siu, Y.-T. Every Stein subvariety admits a Stein neighborhood. Invent. Math., 38 (1976/77), 89–100. · Zbl 0343.32014  Siu, Y.-T. Invariance of plurigenera. Invent. Math., 134 (1998), 661–673. · Zbl 0955.32017  Siu, Y.-T. Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, in Complex Geometry (Göttingen, 2000), pp. 223–277. Springer, Berlin–Heidelberg, 2002. · Zbl 1007.32010  Siu, Y.-T. Finite generation of canonical ring by analytic method. Sci. China Ser. A, 51 (2008), 481–502. · Zbl 1153.32021  Siu, Y.-T. Abundance conjecture, in Geometry and Analysis. No. 2, Adv. Lect. Math., 18, pp. 271–317. Int. Press, Somerville, MA, 2011. · Zbl 1263.14018  Skoda, H., Application des techniques L 2à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids. Ann. Sci. Éc. Norm. Super., 5 (1972), 545–579. · Zbl 0254.32017  Takayama S.: Pluricanonical systems on algebraic varieties of general type. Invent. Math., 165, 551–587 (2006) · Zbl 1108.14031 · doi:10.1007/s00222-006-0503-2  Takayama S.: On the invariance and the lower semi-continuity of plurigenera of algebraic varieties. J. Algebraic Geom., 16, 1–18 (2007) · Zbl 1113.14028 · doi:10.1090/S1056-3911-06-00455-3  Tian G.: On Kähler–Einstein metrics on certain Kähler manifolds with C1(M) > 0. Invent. Math., 89, 225–246 (1987) · Zbl 0599.53046 · doi:10.1007/BF01389077  Tsuji, H., Extension of log pluricanonical forms from subvarieties. Preprint, 2007. arXiv:0709.2710 [math.AG].  Varolin D., Varolin D.: Takayama-type extension theorem. Compos. Math., 144, 522–540 (2008) · Zbl 1163.32008 · doi:10.1112/S0010437X07002989
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.