×

The complex Green operator on CR-submanifolds of \(\mathbb{C}^{n}\) of hypersurface type: compactness. (English) Zbl 1278.32027

A compact set \(K\subset \mathbb{C}^n\) satisfies property \((P_q)\) if for every \(A>0\) there is a \(\mathcal{C}^2\) function \(\lambda_A\) defined in some neighborhood \(U_A\) of \(K\) such that \(0\leq \lambda_A(z) \leq 1\), \(z\in U_A\) and \[ \sum_{|J|=q-1}' \sum_{j,k=1}^n\frac{\partial^2 \lambda_A(z)}{\partial z_j \partial \overline z_k}\, w_{jJ} \overline {w_{kJ}} \geq A |w|^2 \, , \quad z\in U_A,\quad w\in \Lambda_z^{0,q}, \]
where \( \Lambda_z^{0,q}\) denotes the space of \((0,q)\)-forms at \(z.\) It is shown that for a smooth compact pseudoconvex CR-submanifold \(M\) of hypersurface type with property \((P_q)\) and property \((P_{m-1-q})\), \(1\leq q \leq m-2\), the following compactness estimate holds: for all \(\epsilon >0\), there exists a constant \(C_\epsilon\) such that
\[ \|u\|_{L^2_{0,q}(M)} \leq \epsilon \Big( \|\overline \partial_b u \|_{L^2_{0,q+1}(M)} + \|\overline \partial_b^* u \|_{L^2_{0,q-1}(M)} \Big) + C_\epsilon \|u\|_{W^{-1}_{(0,q)}(M)} \]
for all \(u\in {\text{dom}}(\overline \partial_b) \cap {\text{dom}}(\overline \partial_b^*)\), here \(m-1\) is the CR-dimension of \(M.\) In addition, it is proved that \(M\) satisfies property \((P_q)\) on the nullspace of the Levi form if and only if \(M\) satisfies property \((P_q).\) The author points out that A. Raich developed microlocal methods to derive compactness estimates when \(M\) satisfies a CR-analogue of property \((P)\) and is also orientable [A. Raich, Math. Ann. 348, No. 1, 81–117 (2010; Zbl 1238.32032)]. In this paper a new proof is given which does not require orientability.

MSC:

32W10 \(\overline\partial_b\) and \(\overline\partial_b\)-Neumann operators
32V99 CR manifolds

Citations:

Zbl 1238.32032
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Heungju Ahn, Global boundary regularity for the \overline\partial -equation on \?-pseudoconvex domains, Math. Nachr. 280 (2007), no. 4, 343 – 350. · Zbl 1135.32035
[2] É. Amar, Cohomologie complexe et applications, J. London Math. Soc. (2) 29 (1984), no. 1, 127 – 140 (French, with English summary). · Zbl 0583.32033
[3] M. Salah Baouendi, Peter Ebenfelt, and Linda Preiss Rothschild, Real submanifolds in complex space and their mappings, Princeton Mathematical Series, vol. 47, Princeton University Press, Princeton, NJ, 1999. · Zbl 0944.32040
[4] Steve Bell, Differentiability of the Bergman kernel and pseudolocal estimates, Math. Z. 192 (1986), no. 3, 467 – 472. · Zbl 0594.32025
[5] Harold P. Boas and Mei-Chi Shaw, Sobolev estimates for the Lewy operator on weakly pseudoconvex boundaries, Math. Ann. 274 (1986), no. 2, 221 – 231. · Zbl 0588.32023
[6] Harold P. Boas and Emil J. Straube, Sobolev estimates for the complex Green operator on a class of weakly pseudoconvex boundaries, Comm. Partial Differential Equations 16 (1991), no. 10, 1573 – 1582. · Zbl 0747.32007
[7] Albert Boggess, CR manifolds and the tangential Cauchy-Riemann complex, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1991. · Zbl 0760.32001
[8] Boutet de Monvel, L. Intégration des équations de Cauchy-Riemann induites formelles, Séminaire Goulaouic-Lions-Schwartz 1974-1975; Équations Aux Derivées Partielles Linéaires et Non Linéaires, Exp. No. 9, Centre Math., École Polytech., Paris, 1975.
[9] Daniel M. Burns Jr., Global behavior of some tangential Cauchy-Riemann equations, Partial differential equations and geometry (Proc. Conf., Park City, Utah, 1977) Lecture Notes in Pure and Appl. Math., vol. 48, Dekker, New York, 1979, pp. 51 – 56.
[10] David W. Catlin, Global regularity of the \partial -Neumann problem, Complex analysis of several variables (Madison, Wis., 1982) Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 39 – 49.
[11] Çelik, Mehmet, Contributions to the compactness theory of the \( \overline {\partial }\)-Neumann operator, Diss. Texas A&M University, 2008.
[12] Mehmet Çelik and Emil J. Straube, Observations regarding compactness in the \partial -Neumann problem, Complex Var. Elliptic Equ. 54 (2009), no. 3-4, 173 – 186. · Zbl 1165.32018
[13] So-Chin Chen and Mei-Chi Shaw, Partial differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, vol. 19, American Mathematical Society, Providence, RI; International Press, Boston, MA, 2001. · Zbl 0963.32001
[14] E. B. Davies, Spectral theory and differential operators, Cambridge Studies in Advanced Mathematics, vol. 42, Cambridge University Press, Cambridge, 1995. · Zbl 0893.47004
[15] G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. Annals of Mathematics Studies, No. 75. · Zbl 0247.35093
[16] Fu, Siqi, private communication
[17] Siqi Fu and Emil J. Straube, Compactness of the \overline\partial -Neumann problem on convex domains, J. Funct. Anal. 159 (1998), no. 2, 629 – 641. · Zbl 0959.32042
[18] Siqi Fu and Emil J. Straube, Compactness in the \overline\partial -Neumann problem, Complex analysis and geometry (Columbus, OH, 1999) Ohio State Univ. Math. Res. Inst. Publ., vol. 9, de Gruyter, Berlin, 2001, pp. 141 – 160. · Zbl 1011.32025
[19] Roger Gay and Ahmed Sebbar, Division et extension dans l’algèbre \?^{\infty }(\Omega ) d’un ouvert pseudo-convexe à bord lisse de \?\(^{n}\), Math. Z. 189 (1985), no. 3, 421 – 447 (French). · Zbl 0547.32009
[20] Harrington, Phillip S. and Raich, Andrew, Regularity results for \( \overline {\partial }_{b}\) on CR-manifolds of hypersurface type, Commun. Partial Diff. Equations, to appear. · Zbl 1216.32025
[21] F. Reese Harvey and H. Blaine Lawson Jr., On boundaries of complex analytic varieties. I, Ann. of Math. (2) 102 (1975), no. 2, 223 – 290. · Zbl 0317.32017
[22] Lars Hörmander, \?² estimates and existence theorems for the \partial operator, Acta Math. 113 (1965), 89 – 152. · Zbl 0158.11002
[23] Khanh, Tran V., A general method of weights in the \( \overline {\partial }\)-Neumann problem, preprint 2010, arXiv:1001.5093.
[24] Kenneth D. Koenig, A parametrix for the \overline\partial -Neumann problem on pseudoconvex domains of finite type, J. Funct. Anal. 216 (2004), no. 2, 243 – 302. · Zbl 1072.32029
[25] J. J. Kohn, Boundary regularity of \partial , Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 243 – 260.
[26] J. J. Kohn, The range of the tangential Cauchy-Riemann operator, Duke Math. J. 53 (1986), no. 2, 525 – 545. · Zbl 0609.32015
[27] J. J. Kohn, Embedding of CR manifolds, Partial differential equations and related subjects (Trento, 1990) Pitman Res. Notes Math. Ser., vol. 269, Longman Sci. Tech., Harlow, 1992, pp. 151 – 162. · Zbl 0816.32008
[28] J. J. Kohn, Superlogarithmic estimates on pseudoconvex domains and CR manifolds, Ann. of Math. (2) 156 (2002), no. 1, 213 – 248. · Zbl 1037.32032
[29] J. J. Kohn and L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math. 18 (1965), 443 – 492. · Zbl 0125.33302
[30] Jeffery D. McNeal, A sufficient condition for compactness of the \overline\partial -Neumann operator, J. Funct. Anal. 195 (2002), no. 1, 190 – 205. · Zbl 1023.32029
[31] Samangi Munasinghe and Emil J. Straube, Complex tangential flows and compactness of the \partial -Neumann operator, Pacific J. Math. 232 (2007), no. 2, 343 – 354. · Zbl 1152.32019
[32] Andreea C. Nicoara, Global regularity for \overline\partial _{\?} on weakly pseudoconvex CR manifolds, Adv. Math. 199 (2006), no. 2, 356 – 447. · Zbl 1091.32017
[33] Andrew Raich, Compactness of the complex Green operator on CR-manifolds of hypersurface type, Math. Ann. 348 (2010), no. 1, 81 – 117. · Zbl 1238.32032
[34] Andrew S. Raich and Emil J. Straube, Compactness of the complex Green operator, Math. Res. Lett. 15 (2008), no. 4, 761 – 778. · Zbl 1157.32032
[35] Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. · Zbl 0459.46001
[36] Şahutoğlu, Sönmez, Strong Stein neighborhood bases, preprint, 2009.
[37] Mei-Chi Shaw, Global solvability and regularity for \partial on an annulus between two weakly pseudoconvex domains, Trans. Amer. Math. Soc. 291 (1985), no. 1, 255 – 267. · Zbl 0594.35010
[38] Mei-Chi Shaw, \?²-estimates and existence theorems for the tangential Cauchy-Riemann complex, Invent. Math. 82 (1985), no. 1, 133 – 150. · Zbl 0581.35057
[39] -, The closed range property for \( \overline {\partial }\) on domains with pseudoconcave boundary, In Complex Analysis: Several Complex Variables and Connections with PDEs and Geometry (Fribourg 2008). Trends in Mathematics, Birkhäuser Verlag, 2010.
[40] Nessim Sibony, Une classe de domaines pseudoconvexes, Duke Math. J. 55 (1987), no. 2, 299 – 319 (French). · Zbl 0622.32016
[41] Emil J. Straube, Plurisubharmonic functions and subellipticity of the \overline\partial -Neumann problem on non-smooth domains, Math. Res. Lett. 4 (1997), no. 4, 459 – 467. · Zbl 0887.32005
[42] Emil J. Straube, Geometric conditions which imply compactness of the \overline\partial -Neumann operator, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 3, 699 – 710 (English, with English and French summaries). · Zbl 1061.32028
[43] Emil J. Straube, Lectures on the \Bbb L²-Sobolev theory of the \partial -Neumann problem, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2010. · Zbl 1247.32003
[44] W. J. Sweeney, A condition for subellipticity in Spencer’s Neumann problem, J. Differential Equations 21 (1976), no. 2, 316 – 362. · Zbl 0335.35083
[45] J.-M. Trépreau, Sur le prolongement holomorphe des fonctions C-R défines sur une hypersurface réelle de classe \?² dans \?\(^{n}\), Invent. Math. 83 (1986), no. 3, 583 – 592 (French). · Zbl 0586.32016
[46] Giuseppe Zampieri, Complex analysis and CR geometry, University Lecture Series, vol. 43, American Mathematical Society, Providence, RI, 2008. · Zbl 1160.32001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.