On singular integrals with rough kernels in Triebel-Lizorkin weighted spaces. (English) Zbl 1278.42016

Summary: Let \(\Omega \in L^1(\mathbb S^{n-1})\) have mean value zero and satisfy the condition \[ \sup_{\zeta' \in \mathbb S^{n-1}} \int_{\mathbb S^{n-1}} |\Omega(y')| (\ln |\zeta' \cdot y'|^{1})^{(\ln(e + \ln |\zeta' \cdot y'|^{1}))^{\beta}} \, d\sigma(y') <\infty \] for some \(\beta > 0\). Under certain conditions on the measurable function \(h\), we show that the singular integral \[ Tf(x) = \text{p. v.} \int_{\mathbb{R}^n} \frac{h(|y|) \Omega (y')}{|y|^n} f(x y)\,dy \] is bounded on the Triebel-Lizorkin weighted spaces \(\dot{F}^{\alpha,w}_{p,q}\mathbb{R}^n\). We also study the Marcinkiewicz integral (with the same kernel \(\Omega\) as above) in the \(L^p\) weighted spaces.


42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory
42B30 \(H^p\)-spaces
42B35 Function spaces arising in harmonic analysis
Full Text: Euclid


[1] H. Q. Bui, Weighted Besov and Triebel spaces: Interpolation by the real method. Hiroshima Math. J. 12 (1982), pp 581-605. · Zbl 0525.46023
[2] H. Q. Bui, M. Paluszy\(\acute{\text{n}}\)ski and M. H. Taibleson, A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces. Studia Mathematica 119 , no. 3 (1996), pp 219-246. · Zbl 0861.42009
[3] A. P. Calder\(\acute{\text{o}}\)n and A. Zygmund, On singular integrals. Amer. J. Math. 78 (1956), pp 289-309. · Zbl 0072.11501 · doi:10.2307/2372517
[4] J. Chen and C. Zhang, Boundedness of rough singular integral operators on the Triebel-Lizorkin spaces. Journal of Mathematical Analysis and Applications 337 (2008), pp 1048-1052. · Zbl 1213.42034 · doi:10.1016/j.jmaa.2007.04.026
[5] J. Chen, D. Fan and Y. Ying, Singular integral operators on function spaces. J. Math. Anal. Appl. 276 , no. 2 (2002), pp 691-708. · Zbl 1018.42009 · doi:10.1016/S0022-247X(02)00419-5
[6] W. C. Connett, Singular integrals near L1. Proc. Sympos. Pure Math. of the Amer. Math. Soc. (S. Wainger and G. Weiss, eds) 35 I (1979), pp 163-165. · Zbl 0431.42008
[7] Y. Ding, D. Fan and Y. Pan, Weighted Boundedness for a Class of Rough Marcinkiewicz Integrals. Indiana University Mathematics Journal 48 , no. 3 (1999), pp 1037-1055. · Zbl 0949.42014 · doi:10.1512/iumj.1999.48.1696
[8] Y. Ding, Q. Xue and K. Yabuta, Boundedness of the Marcinkiewicz integrals with rough kernel associated to surfaces. Tohoku Math. J. 62 (2010), pp 233-262. · Zbl 1200.42008 · doi:10.2748/tmj/1277298647
[9] J. Duoandikoetxea, Weighted norm inequalities for homogeneous singular integrals. Trans. Amer. Math. Soc. 336 , no. 2 (1992), pp 869-880. · Zbl 0770.42011 · doi:10.2307/2154381
[10] D. Fan and Y. Pan, Singular integral operators with rough kernels supported by subvarieties. Amer. J. Math. 119 (1997), pp 799-839. · Zbl 0899.42002 · doi:10.1353/ajm.1997.0024
[11] D. Fan, K. Guo and Y. Pan, A note of a rough singular integral operator. Math. Ineq. and Appl. 2 (1999), pp 73-81. · Zbl 0929.42007
[12] G. Garcia and J. L. Rubio de Francia, Weighted norm inequalities and related topics. North-Holland (1985).
[13] L. Grafakos and A. Stefanov, \(\lp\) bounds for singular integrals and maximal singular integrals with rough kernel. India. Univ. Math. J. 47 (1998), pp 455-469. · Zbl 0913.42014 · doi:10.1512/iumj.1998.47.1521
[14] L. Grafakos, P. Honz\(\acute{\text{i}}\)k and D. Ryabogin, On the \(p-\)independence boundedness property of Calder\(\acute{\text{o}}\)n-Zygmund theory. Journal f\(\ddot{u}\)r die Reine und Angewandte Mathematik (Crelles Journal) 602 (2007), pp 227-234. · Zbl 1183.42023 · doi:10.1515/CRELLE.2007.008
[15] S. Hofmann, Weighted norm inequalities and vector valued inequalities for certain rough operators. Indiana Univ. Math. J. 42 (1993), pp 1-14. · Zbl 0804.42010 · doi:10.1512/iumj.1993.42.42001
[16] F. Ricci and G. Weiss, A characterization of \(H^1(\sn)\). Proc. Sympos. Pure Math. of Amer. Math. Soc. (S. Wainger and G. Weiss, eds) 35 I (1979), pp 289-294.
[17] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press (1993). 87 , (1958), no. 1, pp 159-172. · Zbl 0821.42001
[18] E. M. Stein and G. Weiss, Interpolation of operators with change of measures. Trans. Amer. Math. Soc. 87 , (1958), no. 1, pp 159-172. · Zbl 0083.34301 · doi:10.2307/1993094
[19] Hans Triebel, Theory of Function Spaces. Monographs in Mathematics 78 Birkh\(\ddot{a}\)user Verlag, Basel (1983). · Zbl 0546.46027
[20] Y. Sawano and K. Yabuta, Fractional Type Marcinkiewicz Integral Operators Associated to Surfaces. http://www.esi.ac.at/preprints/ESI-Preprints.html . · Zbl 1325.42017
[21] Y. Sawano and K. Yabuta, Weighted Estimates for Fractional Type Marcinkiewicz Integral Operators Associated to Surfaces. http://www.esi.ac.at/preprints/ESI-Preprints.html . · Zbl 1325.42017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.