zbMATH — the first resource for mathematics

Integrability and tail estimates for Gaussian rough differential equations. (English) Zbl 1278.60091
The authors consider the stochastic differential equation \[ dY_t=V(Y_t)dX_t,\;Y_0=y_0 \] driven by a Gaussian process \(X\) and study the derivative – the “Jacobian” – \(DU^X_{t\leftarrow 0}(\cdot)|_{y_0}\) of its flow \( U^X_{t\leftarrow 0}(y_0)=Y_t\). The main result of the paper is the existence of moments of all orders of the Jacobian driven by a certain class of Gaussian processes (including but not restricted to the fractional Brownian motion with Hurst parameter \(H>1/4\)). Moreover, the central estimate the authors derive shows that the logarithm of the Jacobian possesses a tail decaying faster than exponential.
The technical result the authors provide is a central step in order to extend the body of work in rough parts random dynamical equations, as detailed in the paper. Furthermore, the presently developed technique can be applied to more general random dynamical equations, i.e., all such equations that can be controlled by a “greedy” approximation of the local \(p\)-variation. (This concept is detailed in the manuscript.)

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60G15 Gaussian processes
Full Text: DOI Euclid arXiv
[1] Baudoin, F. and Hairer, M. (2007). A version of Hörmander’s theorem for the fractional Brownian motion. Probab. Theory Related Fields 139 373-395. · Zbl 1123.60038
[2] Cass, T. and Friz, P. (2010). Densities for rough differential equations under Hörmander’s condition. Ann. of Math. (2) 171 2115-2141. · Zbl 1205.60105
[3] Cass, T., Friz, P. and Victoir, N. (2009). Non-degeneracy of Wiener functionals arising from rough differential equations. Trans. Amer. Math. Soc. 361 3359-3371. · Zbl 1175.60034
[4] Cass, T. and Lyons, T. (2010). Evolving communities and individual preferences. Unpublished manuscript. · Zbl 1321.60204
[5] Coutin, L. and Qian, Z. (2002). Stochastic analysis, rough path analysis and fractional Brownian motions. Probab. Theory Related Fields 122 108-140. · Zbl 1047.60029
[6] Friz, P. and Oberhauser, H. (2009). Rough path limits of the Wong-Zakai type with a modified drift term. J. Funct. Anal. 256 3236-3256. · Zbl 1169.60011
[7] Friz, P. and Oberhauser, H. (2010). A generalized Fernique theorem and applications. Proc. Amer. Math. Soc. 138 3679-3688. · Zbl 1202.60057
[8] Friz, P. and Riedel, S. (2012). Integrability of linear rough differential equations. Available at . 1104.0577v3 · Zbl 1274.60173
[9] Friz, P. and Victoir, N. (2006). A variation embedding theorem and applications. J. Funct. Anal. 239 631-637. · Zbl 1114.46022
[10] Friz, P. and Victoir, N. (2010). Differential equations driven by Gaussian signals. Ann. Inst. Henri Poincaré Probab. Stat. 46 369-413. · Zbl 1202.60058
[11] Friz, P. and Victoir, N. (2011). A note on higher dimensional \(p\)-variation. Electron. J. Probab. 16 1880-1899. · Zbl 1244.60066
[12] Friz, P. K. and Victoir, N. B. (2010). Multidimensional Stochastic Processes as Rough Paths : Theory and Applications. Cambridge Studies in Advanced Mathematics 120 . Cambridge Univ. Press, Cambridge. · Zbl 1193.60053
[13] Ganesh, A., O’Connell, N. and Wischik, D. (2004). Big Queues. Lecture Notes in Math. 1838 . Springer, Berlin. · Zbl 1044.60001
[14] Guasoni, P. (2006). No arbitrage under transaction costs, with fractional Brownian motion and beyond. Math. Finance 16 569-582. · Zbl 1133.91421
[15] Gubinelli, M., Lejay, A. and Antipolis, S. (2009). Global existence for rough differential equations under linear growth condition. Available at . 0905.2399v1
[16] Hairer, M. and Mattingly, J. C. (2006). Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. of Math. (2) 164 993-1032. · Zbl 1130.37038
[17] Hairer, M. and Pillai, N. (2011). Regularity of laws and ergodicity of hypoelliptic SDEs driven by rough paths. Available at . 1104.5218v1 · Zbl 1221.60083
[18] Hairer, M. and Pillai, N. S. (2011). Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 47 601-628. · Zbl 1221.60083
[19] Hambly, B. M. and Lyons, T. J. (1998). Stochastic area for Brownian motion on the Sierpinski gasket. Ann. Probab. 26 132-148. · Zbl 0936.60073
[20] Hu, Y. and Tindel, S. (2011). Smooth density for some nilpotent rough differential equations. Available at . 1104.1972
[21] Inahama, Y. (2012). A moment estimate of the derivative process in rough path theory. Proc. Amer. Math. Soc. 140 2183-2191. · Zbl 1241.60026
[22] Ledoux, M. (1996). Isoperimetry and Gaussian analysis. In Lectures on Probability Theory and Statistics ( Saint-Flour , 1994). Lecture Notes in Math. 1648 165-294. Springer, Berlin. · Zbl 0874.60005
[23] Ledoux, M., Qian, Z. and Zhang, T. (2002). Large deviations and support theorem for diffusion processes via rough paths. Stochastic Process. Appl. 102 265-283. · Zbl 1075.60510
[24] Lyons, T. and Qian, Z. (2002). System Control and Rough Paths . Oxford Univ. Press, Oxford. · Zbl 1029.93001
[25] Lyons, T. J. (1998). Differential equations driven by rough signals. Rev. Mat. Iberoam. 14 215-310. · Zbl 0923.34056
[26] Lyons, T. J., Caruana, M. and Lévy, T. (2007). Differential Equations Driven by Rough Paths. Lecture Notes in Math. 1908 . Springer, Berlin. · Zbl 1176.60002
[27] Norris, J. (1986). Simplified Malliavin calculus. In Séminaire de Probabilités , XX , 1984 / 85. Lecture Notes in Math. 1204 101-130. Springer, Berlin. · Zbl 0609.60066
[28] Nualart, D. (2006). The Malliavin Calculus and Related Topics , 2nd ed. Springer, Berlin. · Zbl 1099.60003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.