×

zbMATH — the first resource for mathematics

Source identity and kernel functions for Inozemtsev-type systems. (English) Zbl 1278.81170
Summary: The Inozemtsev Hamiltonian is an elliptic generalization of the differential operator defining the BC\({}_N\) trigonometric quantum Calogero-Sutherland model, and its eigenvalue equation is a natural many-variable generalization of the Heun differential equation. We present kernel functions for Inozemtsev Hamiltonians and Chalykh-Feigin-Veselov-Sergeev-type deformations thereof. Our main result is a solution of a heat-type equation for a generalized Inozemtsev Hamiltonian which is the source of all these kernel functions. Applications are given, including a derivation of simple exact eigenfunctions and eigenvalues of the Inozemtsev Hamiltonian.
©2012 American Institute of Physics

MSC:
81V70 Many-body theory; quantum Hall effect
81R12 Groups and algebras in quantum theory and relations with integrable systems
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
35K08 Heat kernel
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1063/1.1665604 · doi:10.1063/1.1665604
[2] DOI: 10.1016/0001-8708(75)90151-6 · Zbl 0303.34019 · doi:10.1016/0001-8708(75)90151-6
[3] DOI: 10.1103/PhysRevA.5.1372 · doi:10.1103/PhysRevA.5.1372
[4] DOI: 10.1007/BF00420664 · Zbl 0366.58005 · doi:10.1007/BF00420664
[5] DOI: 10.1007/s002200050161 · Zbl 0903.33010 · doi:10.1007/s002200050161
[6] DOI: 10.1007/s00365-009-9060-4 · Zbl 1193.33028 · doi:10.1007/s00365-009-9060-4
[7] DOI: 10.1007/BF00420008 · Zbl 0679.70005 · doi:10.1007/BF00420008
[8] DOI: 10.1063/1.530498 · Zbl 0805.58027 · doi:10.1063/1.530498
[9] DOI: 10.4310/AJM.1998.v2.n4.a13 · Zbl 0965.37055 · doi:10.4310/AJM.1998.v2.n4.a13
[10] Ronveaux A., Heun’s Differential Equations (1995) · Zbl 0847.34006
[11] Slavyanov S., Special Functions (2000)
[12] DOI: 10.1016/j.physletb.2005.06.061 · Zbl 1247.53053 · doi:10.1016/j.physletb.2005.06.061
[13] Whittaker E. T., A Course of Modern Analysis, 4. ed. (1927)
[14] DOI: 10.1215/S0012-7094-94-07421-8 · Zbl 0811.17026 · doi:10.1215/S0012-7094-94-07421-8
[15] DOI: 10.1088/0305-4470/38/8/L01 · Zbl 1062.81093 · doi:10.1088/0305-4470/38/8/L01
[16] DOI: 10.1088/1751-8113/42/30/304011 · Zbl 1176.81113 · doi:10.1088/1751-8113/42/30/304011
[17] DOI: 10.1063/1.3620412 · Zbl 1272.81065 · doi:10.1063/1.3620412
[18] DOI: 10.1063/1.4732532 · Zbl 1276.81083 · doi:10.1063/1.4732532
[19] DOI: 10.3842/SIGMA.2009.049 · Zbl 1163.33324 · doi:10.3842/SIGMA.2009.049
[20] DOI: 10.1063/1.3367079 · doi:10.1063/1.3367079
[21] DOI: 10.1063/1.532347 · Zbl 0906.34061 · doi:10.1063/1.532347
[22] DOI: 10.1023/A:1015968505753 · Zbl 1039.81028 · doi:10.1023/A:1015968505753
[23] DOI: 10.1007/s00220-003-1012-4 · Zbl 1062.81097 · doi:10.1007/s00220-003-1012-4
[24] DOI: 10.1063/1.1389472 · Zbl 1012.81022 · doi:10.1063/1.1389472
[25] DOI: 10.1090/conm/417/07926 · doi:10.1090/conm/417/07926
[26] DOI: 10.1016/0550-3213(96)00420-8 · Zbl 0925.81446 · doi:10.1016/0550-3213(96)00420-8
[27] DOI: 10.3842/SIGMA.2007.031 · Zbl 1133.81030 · doi:10.3842/SIGMA.2007.031
[28] DOI: 10.1007/s11005-010-0416-2 · Zbl 1198.81093 · doi:10.1007/s11005-010-0416-2
[29] DOI: 10.1088/0305-4470/15/12/001 · Zbl 0516.70024 · doi:10.1088/0305-4470/15/12/001
[30] DOI: 10.1088/0305-4470/31/9/012 · Zbl 0951.37041 · doi:10.1088/0305-4470/31/9/012
[31] DOI: 10.1016/S0019-3577(03)90057-7 · Zbl 1057.33011 · doi:10.1016/S0019-3577(03)90057-7
[32] DOI: 10.1143/PTPS.118.35 · doi:10.1143/PTPS.118.35
[33] DOI: 10.1016/S0370-2693(01)00573-1 · Zbl 1062.81518 · doi:10.1016/S0370-2693(01)00573-1
[34] DOI: 10.1088/0305-4470/35/41/317 · Zbl 1049.81062 · doi:10.1088/0305-4470/35/41/317
[35] DOI: 10.1007/BF01207363 · Zbl 0673.58024 · doi:10.1007/BF01207363
[36] DOI: 10.3842/SIGMA.2009.054 · Zbl 1160.81393 · doi:10.3842/SIGMA.2009.054
[37] Reed M., Methods of Modern Mathematical Physics. II: Fourier Analysis, Self-Adjointness (1975) · Zbl 0308.47002
[38] DOI: 10.1007/s00220-008-0707-y · Zbl 1180.37097 · doi:10.1007/s00220-008-0707-y
[39] DOI: 10.1007/s00220-002-0784-2 · Zbl 1086.81051 · doi:10.1007/s00220-002-0784-2
[40] DOI: 10.1007/s00220-005-1359-9 · Zbl 1088.81056 · doi:10.1007/s00220-005-1359-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.