zbMATH — the first resource for mathematics

Attitude observer-based robust control for a twin rotor system. (English) Zbl 1278.93283
Summary: In this paper, an angular tracking control based on adaptive super twisting algorithm (ASTA) for a Twin Rotor System is presented. With the aim of implementing the ASTA control and taking into consideration the difficulties of measuring some of its states, a Nonlinear Extended State Observer (NESO) is employed to estimate the vector state and furthermore unmeasured dynamics. This scheme increases robustness against unmodeled dynamics and external disturbance, reducing modeling difficulties due to the fact that it is not necessary to know all the parameters of the system. Furthermore, an analysis of stability is provided, where sufficient conditions are given in order to guarantee the stability of the closed-loop system. Experimental results demonstrate the feasibility of the control scheme and illustrate its performance under external disturbance.

93E12 Identification in stochastic control theory
Full Text: Link
[1] Anon1: Two Rotor Aero-dynamical System. User’s manual. Inteco Ltd., 2006.
[2] Ahmed, Q., Bhatti, A., Iqbal, S., Kazmi, I.: 2-sliding mode based robust control for 2-dof helicopter. 11th Internat. Workshop on Variable Structure Systems 2010, pp. 481-486.
[3] Azam, M., Singh, S. N.: Invertibility and trajectory control for nonlinear maneuvers of aircraft. J. Guidance, Control and Dynamics 17 (1998), 1, 192-200. · Zbl 0800.93406 · doi:10.2514/3.21178
[4] Dutka, A., Ordys, A., Grimble, M.: Non-linear predictive control of 2 dof helicopter model. Proc. 42nd IEEE Conference on Decision and Control 2003.
[5] Freidovich, L. B., Khalil, H. K.: Performance recovery of feedback-linearization-based designs. IEEE Trans. Automat. Control 53 (2008), 10, 2324-2334. · Zbl 1367.93498 · doi:10.1109/TAC.2008.2006821
[6] Filippov, A.: Differential Equation with Discontinuos Right-Hand Side. Kluwer 1988.
[7] Gao, Z.: Scaling and bandwidth - parametrization based controller tuning. IEEE Proc. American Control Conference, Denver 2003, pp. 4989-4996.
[8] Guo, B. Z., Zhao, Z. L.: On convergence of non-linear extended state observer for multi-input multi-output systems with uncertainty. IET Control Theory Appl. 6 (2012), 15, 2375-2386. · doi:10.1049/iet-cta.2012.0123
[9] Khalil, H. K.: Nonlinear Systems. Prentice Hall, Englewood Cliffs, NJ 2002. · Zbl 1194.93083 · doi:10.1016/j.automatica.2010.03.015
[10] Kokotovic, P. V., Khalil, H. K.: Singular Perturbation Methods in Control: Analysis and Design. Academic Press, London 1986. · Zbl 0989.93001
[11] Levant, A.: High-order sliding modes, differentiation and output-feedback control. Internat. J. Control 76 (2003), 9-10, 924-941. · Zbl 1049.93014 · doi:10.1080/0020717031000099029
[12] Lopez-Martinez, M., Rubio, F.: Approximate feedback linearization of a laboratory helicopter. Proc. 6th Portuguese Conference on Automatic Control 2004, pp. 43-48.
[13] Lopez-Martinez, M., Ortega, M., Vivas, C., Rubio, F.: Nonlinear \(L_2\) control of a laboratory helicopter with variable speed rotors. Automatica 43 (2007), 4, 655-661. · Zbl 1114.93024 · doi:10.1016/j.automatica.2006.10.013
[14] Moreno, J., Osorio, M.: Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans. Automat. Control 57 (2012), 4, 1035-1040. · Zbl 1369.93568 · doi:10.1109/TAC.2012.2186179
[15] Mullhaupt, Ph., Srinivasan, B., Levine, J., Bonvin, D.: A Toy more difficult to control than the real thing. Proc. European Control Conference 1999, pp. 253-258.
[16] Petkov, P., Christov, N., Konstatinov, M.: Robust real-time control of a two-rotor aerodynamic system. Proc. 17th IFAC World Congress 2008, pp. 6422-6427.
[17] Plestan, F., Chriette, A.: A robust controller based on adaptive super-twisting algorithm for a 3DOF helicopter. Decision and Control Conference 2012, pp. 7095-7100.
[18] Poznyak, A. S.: Advanced Mathematical Tools for Automatic Control Engineers. Elsevier, Deterministic Techniques 1, Amsterdam 2008, p. 774.
[19] Rahideh, A., Shaheed, M., Huijberts, H.: Dynamic modelling of a TRMS using analytical and empirical approaches. Control Engrg. Practice 16 (2008), 241-259. · doi:10.1016/j.conengprac.2007.04.008
[20] Reale, G., Ortner, P., Re, L. Del: Nonlinear observers for closed-loop control of a combustion engine test bench. Proc. 2009 American Control Conference 6, Missouri 2009, pp. 4648-4653.
[21] Saksena, V., O’Reily, J., Kokotovic, P.: Singular perturbations and time-scale methods in control theory: Survey 1976 - 1983. Automatica 20 (1984), 273-293. · Zbl 0532.93002 · doi:10.1016/0005-1098(84)90044-X
[22] Shtessel, Y., Taleb, M., Plestan, F.: A novel adaptive-gain supertwisting sliding mode controller: methodology and application. Automatica 48 (2012), 5, 759-769. · Zbl 1246.93028 · doi:10.1016/j.automatica.2012.02.024
[23] Yang, X., Huang, Y.: Capabilities of extended state observer for estimating uncertainties. Proc. American Control Conference 1, Missouri 2009, pp. 3700-3705.
[24] Zhu, B., Huo, W.: Trajectory linearization control for a quadrotor helicopter. 8th International Conference on Control and Automation 2010, pp. 34-39.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.