×

zbMATH — the first resource for mathematics

The metaplectic Howe duality and polynomial solutions for the symplectic Dirac operator. (English) Zbl 1279.30051
Summary: We study various aspects of the metaplectic Howe duality realized by the Fischer decomposition for the metaplectic representation space of polynomials on \(\mathbb R^{2n}\) valued in the Segal-Shale-Weil representation. As a consequence, we determine symplectic monogenics, i.e. the space of polynomial solutions of the symplectic Dirac operator \(D_s\).

MSC:
30G35 Functions of hypercomplex variables and generalized variables
37J05 Relations of dynamical systems with symplectic geometry and topology (MSC2010)
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Howe, R., Remarks on classical invariant theory, Trans. Amer. Math. Soc., 313, 539-570, (1989) · Zbl 0674.15021
[2] Howe, R., Transcending classical invariant theory, J. Amer. Math. Soc., 2, 3, 535-552, (1989) · Zbl 0716.22006
[3] Brackx, F.; De Schepper, H.; Eelbode, D.; Souček, V., The Howe dual pair in Hermitean Clifford analysis, Rev. Mat. Iberoam., 26, 2, 449-479, (2010) · Zbl 1201.30061
[4] Slupinski, M., A Hodge type decomposition for spinor valued forms, Ann. Sci. Éc. Norm. Supér. (4), 29, 23-48, (1996) · Zbl 0855.58002
[5] De Bie, H.; Sommen, F., Correct rules for Clifford calculus on superspace, Adv. Appl. Clifford Algebr., 17, 357-382, (2007) · Zbl 1129.30034
[6] De Bie, H.; Sommen, F., Spherical harmonics and integration in superspace, J. Phys. A, 40, 7193-7212, (2007) · Zbl 1143.30315
[7] De Bie, H.; Eelbode, D.; Sommen, F., Spherical harmonics and integration in superspace II, J. Phys. A, 42, 245204, (2009), 18pp · Zbl 1179.30053
[8] De Bie, H., Fourier transform and related integral transforms in superspace, J. Math. Anal. Appl., 345, 147-164, (2008) · Zbl 1149.30037
[9] B. Kostant, Symplectic spinors, in: Rome Symposia, XIV, 1974, pp. 139-152. · Zbl 0321.58015
[10] Habermann, K.; Habermann, L., (Introduction to Symplectic Dirac Operators, Lecture Notes in Mathematics, vol. 1887, (2006), Springer-Verlag Berlin) · Zbl 1102.53032
[11] L. Kadlcakova, Contact symplectic geometry in parabolic invariant theory and symplectic Dirac operator, Dissertation Thesis, Mathematical Institute of Charles University, Prague, 2002. · Zbl 1024.53021
[12] Fulton, W.; Harris, J., (Representation Theory: A First Course, Graduate Texts in Mathematics/Readings in Mathematics, (1991), Springer) · Zbl 0744.22001
[13] Crumeyrolle, A., Orthogonal and symplectic Clifford algebras: spinor structures, (2009), Springer Netherlands · Zbl 0701.53003
[14] Britten, D. J.; Lemire, F. W., On modules of bounded multiplicities for the symplectic algebras, Trans. Amer. Math. Soc., 351, 3413-3431, (1999) · Zbl 0930.17005
[15] Ørsted, B.; Somberg, P.; Souček, V., The Howe duality for the Dunkl version of the Dirac operator, Adv. Appl. Clifford Algebr., 19, 403-415, (2009) · Zbl 1404.17018
[16] T.J. Enright, R. Howe, N.R. Wallach, A classification of unitary highest weight modules, in: P.C. Trombi (Ed.), Representation Theory of Reductive Groups, Boston, 1983, pp. 97-143. · Zbl 0535.22012
[17] H. De Bie, Harmonic and Clifford analysis in superspace, Ph.D. Thesis, Ghent University, 2008.
[18] Etingof, P.; Ginzburg, V., Symplectic reflection algebras, Calogero-Moser space, and deformed harish-chandra homomorphism, Invent. Math., 147, 243-348, (2002) · Zbl 1061.16032
[19] K. Coulembier, H. De Bie, Conformal symmetries of the super Dirac operator, preprint, 29 pages, arXiv:1303.2195. · Zbl 1395.17018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.