×

A generalization of lacunary equistatistical convergence of positive linear operators. (English) Zbl 1279.41031

Summary: We consider some analogs of the Korovkin approximation theorem via lacunary equi-statistical convergence. In particular, we study lacunary equi-statistical convergence of approximating operators on \(H_{w_2}\) spaces, the spaces of all real valued continuous functions \(f\) defined on \(K = [0, \infty)^m\) and satisfying some special conditions.

MSC:

41A36 Approximation by positive operators
41A10 Approximation by polynomials

References:

[1] Altomore, F.; Campiti, M., Korovkin Type Approximation Theory and Its Application (1994), Berlin, Germany: Walter de Gruyter, Berlin, Germany · Zbl 0924.41001
[2] DeVore, R. A., The Approximation of Continuous Functions by Positive Linear Operators. The Approximation of Continuous Functions by Positive Linear Operators, Lecture Notes in Mathematics, 293 (1972), Berlin, Germany: Springer, Berlin, Germany · Zbl 0276.41011
[3] Korovkin, P. P., Linear Operators and Approximation Theory (1960), New Delhi, India: Hindustan, New Delhi, India · Zbl 0094.10201
[4] Mursaleen, M.; Kiliçman, A., Korovkin second theorem via \(B\)-statistical \(A\)-summability, Abstract and Applied Analysis, 2013 (2013) · Zbl 1477.41012 · doi:10.1155/2013/598963
[5] Srivastava, H. M.; Mursaleen, M.; Khan, A., Generalized equi-statistical convergence of positive linear operators and associated approximation theorems, Mathematical and Computer Modelling, 55, 9-10, 2040-2051 (2012) · Zbl 1255.41013 · doi:10.1016/j.mcm.2011.12.011
[6] Balcerzak, M.; Dems, K.; Komisarski, A., Statistical convergence and ideal convergence for sequences of functions, Journal of Mathematical Analysis and Applications, 328, 1, 715-729 (2007) · Zbl 1119.40002 · doi:10.1016/j.jmaa.2006.05.040
[7] Erkuş, E.; Duman, O., A Korovkin type approximation theorem in statistical sense, Studia Scientiarum Mathematicarum Hungarica, 43, 3, 285-294 (2006) · Zbl 1108.41012 · doi:10.1556/SScMath.43.2006.3.2
[8] Aktuğlu, H.; Gezer, H., Lacunary equi-statistical convergence of positive linear operators, Central European Journal of Mathematics, 7, 3, 558-567 (2009) · Zbl 1181.41039 · doi:10.2478/s11533-009-0009-4
[9] Çakar, Ö.; Gadjiev, A. D., On uniform approximation by Bleimann, Butzer and Hahn operators on all positive semiaxis, Transactions of Academy of Sciences of Azerbaijan, Series of Physical-Technical and Mathematical Sciences, 19, 5, 21-26 (1999) · Zbl 1203.41014
[10] Karakuş, S.; Demirci, K.; Duman, O., Equi-statistical convergence of positive linear operators, Journal of Mathematical Analysis and Applications, 339, 2, 1065-1072 (2008) · Zbl 1131.41008 · doi:10.1016/j.jmaa.2007.07.050
[11] Duman, O.; Khan, M. K.; Orhan, C., \(A\)-statistical convergence of approximating operators, Mathematical Inequalities and Applications, 6, 4, 689-699 (2003) · Zbl 1086.41008 · doi:10.7153/mia-06-62
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.