×

zbMATH — the first resource for mathematics

A proof of Morse’s theorem about the cancellation of critical points. (English. Abridged French version) Zbl 1279.57023
Summary: In this Note, we give a proof of the famous theorem of M. Morse dealing with the cancellation of a pair of non-degenerate critical points of a smooth function. Our proof consists of a reduction to the one-dimensional case where the question becomes easy to answer.

MSC:
57R70 Critical points and critical submanifolds in differential topology
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
PDF BibTeX XML Cite
Full Text: DOI Link
References:
[1] Cerf, J.; Gramain, A., Le théorème du h-cobordisme (Smale), (1968), Secr. math. Éc. normale sup. Paris, Cours professé au printemps 1966 à la faculté des sciences dʼOrsay
[2] Huebsch, W.; Morse, M., The bowl theorem and a model non-degenerate function, Proc. Natl. Acad. Sci. USA, 51, 49-51, (1964) · Zbl 0124.05901
[3] F. Laudenbach, A proof of Reidemeister-Singerʼs theorem by Cerfʼs methods, arXiv:1202.1130 [math.GT].
[4] Meyer, K., Energy functions for Morse-Smale systems, Amer. J. Math., 90, 1031-1040, (1968) · Zbl 0219.58004
[5] Milnor, J., Lectures on the h-cobordism theorem, (1965), Princeton University Press
[6] Morse, M., The existence of polar non-degenerate functions on differentiable manifolds, Ann. Math., 71, 352-383, (1960) · Zbl 0096.03604
[7] Morse, M., Bowls of a non-degenerate function on a compact differentiable manifold, (Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), (1965), Princeton University Press), 81-103 · Zbl 0159.24803
[8] Moser, J., On the volume elements on a manifold, Trans. Amer. Math. Soc., 120, 286-294, (1965) · Zbl 0141.19407
[9] Smale, S., On gradient dynamical systems, Ann. Math., 74, 199-206, (1961) · Zbl 0136.43702
[10] Smale, S., Generalized poincaréʼs conjecture in dimensions greater than four, Ann. Math., 74, 2, 391-406, (1961) · Zbl 0099.39202
[11] Thom, R., Sur une partition en cellules associée à une fonction sur une variété, C. R. Acad. Sci. Paris, 228, 973-975, (1949) · Zbl 0034.20802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.