×

Existence of solutions for nonlinear fractional \(q\)-difference inclusions with nonlocal Robin (separated) conditions. (English) Zbl 1280.39007

This paper deals with nonlinear fractional \(q\)-difference inclusions. It adresses existence problems with boundary conditions under convexity assumptions. A particular feature is that it relies on functional analysis techniques for multivalued maps.

MSC:

39A13 Difference equations, scaling (\(q\)-differences)
34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
34A60 Ordinary differential inclusions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agarwal R.P.: Certain fractional q-integrals and q-derivatives. Proc. Cambridge Philos. Soc. 66, 365–370 (1969) · Zbl 0179.16901
[2] R. P. Agarwal, M. Belmekki, M. Benchohra, A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative. Adv. Difference Equ. (2009), Art. ID 981728, 47 pp. · Zbl 1182.34103
[3] R. P. Agarwal, B. Ahmad, A. Alsaedi, N. Shahzad, On the dimension of the solution set for semilinear fractional differential inclusions. Abstr. Appl. Anal. (2012), Article 305924, 10 pp. · Zbl 1245.34007
[4] B. Ahmad, S. K. Ntouyas, Boundary value problems for q-difference inclusions. Abstr. Appl. Anal. (2011), Article ID 292860, 15 pp. · Zbl 1216.39012
[5] Ahmad B., Ntouyas S.K., Purnaras I.K.: Existence results for nonlinear q-difference equations with nonlocal boundary conditions. Comm. Appl. Nonlinear Anal. 19, 59–72 (2012) · Zbl 1278.39010
[6] W. A. Al-Salam, Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 15 (1966-1967), 135–140. · Zbl 0171.10301
[7] Bangerezako G: Variational q-calculus. J. Math. Anal. Appl. 289, 650–665 (2004) · Zbl 1043.49001
[8] Bressan A., Colombo G: Extensions and selections of maps with decomposable values. Studia Math. 90, 69–86 (1988) · Zbl 0677.54013
[9] C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. · Zbl 0346.46038
[10] A. Cernea, On the existence of solutions for nonconvex fractional hyperbolic differential inclusions. Commun. Math. Anal. 9 (2010), 109–120. · Zbl 1193.35003
[11] S. Hamani, M. Benchohra, J. R. Graef, Existence results for boundary-value problems with nonlinear fractional differential inclusions and integral conditions. Electron. J. Differential Equations 20 (2010), 16 pp. · Zbl 1185.26010
[12] J. Henderson, A. Ouahab, A Filippov’s theorem, some existence results and the compactness of solution sets of impulsive fractional order differential inclusions. Mediterr. J. Math. 9 (2012), 453–485. · Zbl 1263.34010
[13] H. Covitz, S. B. Nadler Jr., Multivalued contraction mappings in generalized metric spaces. Israel J. Math. 8 (1970), 5–11. · Zbl 0192.59802
[14] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin- New York, 1992. · Zbl 0760.34002
[15] A. Dobrogowska, A. Odzijewicz, Second order q-difference equations solvable by factorization method. J. Comput. Appl. Math. 193 (2006), 319–346. · Zbl 1119.39017
[16] M. El-Shahed, H. A. Hassan, Positive solutions of q-difference equation. Proc. Amer. Math. Soc. 138 (2010), 1733–1738. · Zbl 1201.39003
[17] M. El-Shahed, F. Al-Askar, Positive solutions for boundary value problem of nonlinear fractional q-difference equation. ISRN Math. Anal. (2011), Article ID 385459, 12 pp. · Zbl 1213.39008
[18] T. Ernst, The History of q-Calculus and a New Method. UUDMReport 2000:16, Department of Mathematics, Uppsala University, 2000. ISSN:1101-3591.
[19] R. Ferreira, Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math. Appl. 61 (2011), 367–373. · Zbl 1216.39013
[20] R. Ferreira, Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 70 (2010), 10 pp. · Zbl 1207.39010
[21] M. Frigon, Théor’emes d’existence de solutions d’inclusions différentielles. In: ”Topological Methods in Differential Equations and Inclusions” (A. Granas and M. Frigon Eds), 51–87, NATO ASI Series C 472, Kluwer Acad. Publ., Dordrecht, 1995. · Zbl 0834.34021
[22] G. Gasper, M. Rahman, Basic Hypergeometric Series. Cambridge University Press, Cambridge, 1990. · Zbl 0695.33001
[23] J. R. Graef, L. Kong, Positive solutions for a class of higher order boundary value problems with fractional q-derivatives. Appl. Math. Comput. 218 (2012), 9682–9689. · Zbl 1254.34010
[24] A. Granas, J. Dugundji, Fixed Point Theory. Springer-Verlag, New York, 2005. · Zbl 1025.47002
[25] S. Hamani, M. Benchohra, J. R. Graef, Existence results for boundary-value problems with nonlinear fractional differential inclusions and integral conditions. Electron. J. Differential Equations 20 (2010), 16 pp. · Zbl 1185.26010
[26] J. Henderson, A. Ouahab, Fractional functional differential inclusions with finite delay. Nonlinear Anal. 70 (2009), 2091–2105. · Zbl 1159.34010
[27] S. Hu, N. Papageorgiou, Handbook of Multivalued Analysis, Theory I. Kluwer, Dordrecht, 1997. · Zbl 0887.47001
[28] M. E. H. Ismail, P. Simeonov, q-difference operators for orthogonal polynomials. J. Comput. Appl. Math. 233 (2009), 749–761. · Zbl 1185.39005
[29] F. H. Jackson, On q-difference equations. Amer. J. Math. 32 (1910), 305–314. · JFM 41.0502.01
[30] Jackson F.H.: On q-functions and a certain difference operator. Trans. Roy. Soc. Edinburgh 46, 253–281 (1908)
[31] Kac V., Cheung P.: Quantum Calculus. Springer, New York (2002) · Zbl 0986.05001
[32] M. Kisielewicz, Differential Inclusions and Optimal Control. Kluwer, Dordrecht, 1991. · Zbl 0731.49001
[33] A. Lasota, Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786. · Zbl 0151.10703
[34] J. Ma, J. Yang, Existence of solutions for multi-point boundary value problem of fractional q-difference equation. Electron. J. Qual. Theory Differ. Equ. 92 (2011), 10 pp. · Zbl 1340.39010
[35] R. Wegrzyk, Fixed point theorems for multifunctions and their applications to functional equations. Dissertationes Math. (Rozprawy Mat.) 201 (1982), 28 pp. · Zbl 0521.54034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.