×

zbMATH — the first resource for mathematics

Minimal surfaces with positive genus and finite total curvature in \(\mathbb{H}^2 \times \mathbb{R}\). (English) Zbl 1280.49062
Summary: We construct the first examples of complete, properly embedded minimal surfaces in \(\mathbb{H}^2 \times \mathbb{R}\) with finite total curvature and positive genus. These are constructed by gluing copies of horizontal catenoids or other nondegenerate summands. We also establish that every horizontal catenoid is nondegenerate.

MSC:
49Q05 Minimal surfaces and optimization
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] M T Anderson, Complete minimal varieties in hyperbolic space, Invent. Math. 69 (1982) 477 · Zbl 0515.53042 · doi:10.1007/BF01389365 · eudml:142964
[2] P Collin, H Rosenberg, Construction of harmonic diffeomorphisms and minimal graphs, Ann. of Math. 172 (2010) 1879 · Zbl 1209.53010 · doi:10.4007/annals.2010.172.1879
[3] B Daniel, Isometric immersions into \(\mathbb S^n\times\mathbb R\) and \(\mathbb H^n\times\mathbb R\) and applications to minimal surfaces, Trans. Amer. Math. Soc. 361 (2009) 6255 · Zbl 1213.53075 · doi:10.1090/S0002-9947-09-04555-3
[4] D Gilbarg, N S Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer (2001) · Zbl 1042.35002
[5] L Hauswirth, B Nelli, R Sa Earp, E Toubiana, Minimal ends in \(\mathbbH^2 \times \mathbbR\) with finite total curvature and a Schoen type theorem (2012) · arxiv:1111.0851v2
[6] L Hauswirth, R Sa Earp, E Toubiana, Associate and conjugate minimal immersions in \(M\times\mathbfR\), Tohoku Math. J. 60 (2008) 267 · Zbl 1153.53041 · doi:10.2748/tmj/1215442875
[7] H Jenkins, J Serrin, The Dirichlet problem for the minimal surface equation, with infinite data, Bull. Amer. Math. Soc. 72 (1966) 102 · Zbl 0134.08502 · doi:10.1090/S0002-9904-1966-11438-6
[8] R Kusner, R Mazzeo, D Pollack, The moduli space of complete embedded constant mean curvature surfaces, Geom. Funct. Anal. 6 (1996) 120 · Zbl 0966.58005 · doi:10.1007/BF02246769 · eudml:58220
[9] N N Lebedev, Special functions and their applications, Dover Publications (1972) · Zbl 0271.33001
[10] J M Manzano, J Pérez, M M Rodríguez, Parabolic stable surfaces with constant mean curvature, Calc. Var. Partial Differential Equations 42 (2011) 137 · Zbl 1228.53009 · doi:10.1007/s00526-010-0383-6 · arxiv:0910.5373
[11] L Mazet, M M Rodríguez, H Rosenberg, The Dirichlet problem for the minimal surface equation, with possible infinite boundary data, over domains in a Riemannian surface, Proc. Lond. Math. Soc. 102 (2011) 985 · Zbl 1235.53007 · doi:10.1112/plms/pdq032 · arxiv:0806.0498
[12] R Mazzeo, F Pacard, D Pollack, Connected sums of constant mean curvature surfaces in Euclidean 3 space, J. Reine Angew. Math. 536 (2001) 115 · Zbl 0972.53010 · doi:10.1515/crll.2001.054
[13] R Mazzeo, D Pollack, K Uhlenbeck, Moduli spaces of singular Yamabe metrics, J. Amer. Math. Soc. 9 (1996) 303 · Zbl 0849.58012 · doi:10.1090/S0894-0347-96-00208-1
[14] R Mazzeo, M Sáez, Multiple-layer solutions to the Allen-Cahn equation on hyperbolic space, to appear in Proc. Amer. Math. Soc.
[15] R Mazzeo, A Vasy, Resolvents and Martin boundaries of product spaces, Geom. Funct. Anal. 12 (2002) 1018 · Zbl 1031.58020 · doi:10.1007/PL00012647
[16] W H Meeks III, J Pérez, A Ros, Bounds on the topology and index of classical minimal surfaces · www.ugr.es
[17] R B Melrose, Geometric scattering theory, Stanford Lectures, Cambridge Univ. Press (1995) · Zbl 0849.58071
[18] F Morabito, A Costa-Hoffman-Meeks type surface in \(\mathbb H^2\times\mathbb R\), Trans. Amer. Math. Soc. 363 (2011) 1 · Zbl 1220.53014 · doi:10.1090/S0002-9947-2010-04952-9
[19] F Morabito, M M Rodríguez, Saddle towers and minimal \(k\)-noids in \(\mathbb H^2\times\mathbb R\), J. Inst. Math. Jussieu 11 (2012) 333 · Zbl 1238.53004 · doi:10.1017/S1474748011000107
[20] M Murata, Structure of positive solutions to \((-\Delta+V)u=0\) in \(\mathbfR^n\), Duke Math. J. 53 (1986) 869 · Zbl 0624.35023 · doi:10.1215/S0012-7094-86-05347-0
[21] B Nelli, H Rosenberg, Minimal surfaces in \(\mathbbH^2\times\mathbb R\), Bull. Braz. Math. Soc. 33 (2002) 263 · Zbl 1038.53011 · doi:10.1007/s005740200013
[22] J Pérez, A Ros, The space of complete minimal surfaces with finite total curvature as Lagrangian submanifold, Trans. Amer. Math. Soc. 351 (1999) 3935 · Zbl 0945.53009 · doi:10.1090/S0002-9947-99-02250-3
[23] M A Pinsky, Large deviations for diffusion processes (editors A Friedman, M A Pinsky), Academic Press (1978) 271 · Zbl 0452.60033
[24] J Pyo, New complete embedded minimal surfaces in \(\mathbb H^2\times\mathbb R\), Ann. Global Anal. Geom. 40 (2011) 167 · Zbl 1242.53074 · doi:10.1007/s10455-011-9251-7
[25] M A Shubin, Pseudodifferential operators and spectral theory, Springer (2001) · Zbl 0980.35180 · doi:10.1007/978-3-642-56579-3
[26] D Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom. 25 (1987) 327 · Zbl 0615.53029 · euclid:jdg/1214440979
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.