Giraitis, Liudas; Koul, Hira L. On asymptotic distributions of weighted sums of periodograms. (English) Zbl 1280.62112 Bernoulli 19, No. 5B, 2389-2413 (2013). Summary: We establish the asymptotic normality of weighted sums of periodograms of a stationary linear process where the weights depend on the sample size. Such sums appear in numerous statistical applications and can be regarded as a discretized versions of quadratic forms involving integrals of weighted periodograms. Conditions for asymptotic normality of these weighted sums are simple, minimal, and resemble the Lindeberg-Feller condition for weighted sums of independent and identically distributed random variables. Our results are applicable to a large class of short, long or negative memory processes. The proof is based on sharp bounds derived for Bartlett type approximations of these sums by the corresponding sums of weighted periodograms of independent and identically distributed random variables. Cited in 3 Documents MSC: 62M15 Inference from stochastic processes and spectral analysis 62E20 Asymptotic distribution theory in statistics Keywords:Bartlett approximation; Lindeberg-Feller; linear processes; quadratic forms × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Bhansali, R.J., Giraitis, L. and Kokoszka, P.S. (2007). Approximations and limit theory for quadratic forms of linear processes. Stochastic Process. Appl. 117 71-95. · Zbl 1107.62038 · doi:10.1016/j.spa.2006.05.015 [2] Bhansali, R.J., Giraitis, L. and Kokoszka, P.S. (2007). Convergence of quadratic forms with nonvanishing diagonal. Statist. Probab. Lett. 77 726-734. · Zbl 1283.62027 [3] Brockwell, P.J. and Davis, R.A. (1991). Time Series : Theory and Methods , 2nd ed. New York: Springer. · Zbl 0709.62080 [4] Fox, R. and Taqqu, M.S. (1987). Central limit theorems for quadratic forms in random variables having long-range dependence. Probab. Theory Related Fields 74 213-240. · Zbl 0586.60019 · doi:10.1007/BF00569990 [5] Giraitis, L., Koul, H.L. and Surgailis, D. (2012). Large Sample Inference for Long Memory Processes . London: Imperial College Press. · Zbl 1279.62016 [6] Giraitis, L. and Surgailis, D. (1990). A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotical normality of Whittle’s estimate. Probab. Theory Related Fields 86 87-104. · Zbl 0717.62015 · doi:10.1007/BF01207515 [7] Giraitis, L. and Taqqu, M.S. (1998). Central limit theorems for quadratic forms with time-domain conditions. Ann. Probab. 26 377-398. · Zbl 0943.60018 · doi:10.1214/aop/1022855425 [8] Giraitis, L., Taqqu, M.S. and Terrin, N. (1998). Limit theorems for bivariate Appell polynomials. II. Non-central limit theorems. Probab. Theory Related Fields 110 333-367. · Zbl 0927.60031 · doi:10.1007/s004400050151 [9] Grenander, U. and Rosenblatt, M. (1953). Statistical spectral analysis of time series arising from stationary stochastic processes. Ann. Math. Stat. 24 537-558. · Zbl 0053.41005 · doi:10.1214/aoms/1177728913 [10] Guttorp, P. and Lockhart, R.A. (1988). On the asymptotic distribution of quadratic forms in uniform order statistics. Ann. Statist. 16 433-449. · Zbl 0638.62022 · doi:10.1214/aos/1176350713 [11] Hannan, E.J. (1973). The asymptotic theory of linear time-series models. J. Appl. Probab. 10 130-145. · Zbl 0261.62073 · doi:10.2307/3212501 [12] Hannan, E.J. and Heyde, C.C. (1972). On limit theorems for quadratic functions of discrete time series. Ann. Math. Statist. 43 2058-2066. · Zbl 0254.62057 · doi:10.1214/aoms/1177690885 [13] Hosking, J.R.M. (1981). Fractional differencing. Biometrika 68 165-176. · Zbl 0464.62088 · doi:10.1093/biomet/68.1.165 [14] Hosking, J.R.M. (1996). Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long-memory time series. J. Econometrics 73 261-284. · Zbl 0854.62084 · doi:10.1016/0304-4076(95)01740-2 [15] Hsing, T. and Wu, W.B. (2004). On weighted \(U\)-statistics for stationary processes. Ann. Probab. 32 1600-1631. · Zbl 1049.62099 · doi:10.1214/009117904000000333 [16] Lahiri, S.N. (2003). A necessary and sufficient condition for asymptotic independence of discrete Fourier transforms under short- and long-range dependence. Ann. Statist. 31 613-641. · Zbl 1039.62087 · doi:10.1214/aos/1051027883 [17] Liu, W. and Wu, W.B. (2010). Asymptotics of spectral density estimates. Econometric Theory 26 1218-1245. · Zbl 1294.62077 · doi:10.1017/S026646660999051X [18] Nordman, D.J. and Lahiri, S.N. (2006). A frequency domain empirical likelihood for short- and long-range dependence. Ann. Statist. 34 3019-3050. · Zbl 1114.62095 · doi:10.1214/009053606000000902 [19] Nualart, D. and Peccati, G. (2005). Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 177-193. · Zbl 1097.60007 · doi:10.1214/009117904000000621 [20] Robinson, P.M. (1995). Gaussian semiparametric estimation of long range dependence. Ann. Statist. 23 1630-1661. · Zbl 0843.62092 · doi:10.1214/aos/1176324317 [21] Robinson, P.M. (1995). Log-periodogram regression of time series with long range dependence. Ann. Statist. 23 1048-1072. · Zbl 0838.62085 · doi:10.1214/aos/1176324636 [22] Shao, X. (2010). Nonstationarity-extended Whittle estimation. Econometric Theory 26 1060-1087. · Zbl 1401.62176 · doi:10.1017/S0266466609990466 [23] Shao, X. and Wu, W.B. (2007). Asymptotic spectral theory for nonlinear time series. Ann. Statist. 35 1773-1801. · Zbl 1147.62076 · doi:10.1214/009053606000001479 [24] Shao, X. and Wu, W.B. (2007). Local Whittle estimation of fractional integration for nonlinear processes. Econometric Theory 23 899-929. · Zbl 1274.62566 · doi:10.1017/S0266466607070387 [25] Terrin, N. and Taqqu, M.S. (1990). A noncentral limit theorem for quadratic forms of Gaussian stationary sequences. J. Theoret. Probab. 3 449-475. · Zbl 0724.60048 · doi:10.1007/BF01061262 [26] Wu, W.B. and Shao, X. (2007). A limit theorem for quadratic forms and its applications. Econometric Theory 23 930-951. · Zbl 1237.60020 · doi:10.1017/S0266466607070399 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.