Deterministic and stochastic bifurcations of the catalytic CO oxidation on Ir(111) surfaces with multiple delays. (English) Zbl 1280.80003

The authors study the bifurcation properties of a nonlinear ordinary differential equation describing the catalytic CO oxidation. Using center manifold and Hopf bifurcation techniques, they consider the deterministic bifurcation of solutions. They also study the stochastic approach for the catalytic CO oxidation on Ir(111) surfaces and present new criteria ensuring the stability of the system.


80A32 Chemically reacting flows
34C23 Bifurcation theory for ordinary differential equations
Full Text: DOI


[1] Arnold, L., Random Dynamical Systems (1998), New York, NY, USA: Springer, New York, NY, USA
[2] Mao, X., Stochastic Differential Equations and their Applications (1997), Chichester, UK: Horwood Publishing, Chichester, UK
[3] Zhu, W., Nonlinear Stochastic Dynamics and Control in Hamiltonian Formulation (2003), Beijing, China: Science Press, Beijing, China
[4] Sri Namachchivaya, N., Stochastic bifurcation, Applied Mathematics and Computation, 38, 2, 101-159 (1990) · Zbl 0702.93063
[5] Khasminskii, R. Z., On the principle of averaging the Itô’s stochastic differential equations, Kybernetika, 4, 260-279 (1968)
[6] Keller, H., Random Attractors and and bifurcations of the stochastic Lorenz system, Technical Report, 389 (1996), Institut für Dynamische Systeme, Universität Bremen
[7] Huang, D.; Wang, H.; Feng, J.; Zhu, Z.-W., Hopf bifurcation of the stochastic model on HAB nonlinear stochastic dynamics, Chaos, Solitons and Fractals, 27, 4, 1072-1079 (2006) · Zbl 1134.34312
[8] Hong, L.; Sun, J.-Q., Codimension two bifurcations of nonlinear systems driven by fuzzy noise, Physica D: Nonlinear Phenomena, 213, 2, 181-189 (2006) · Zbl 1104.34030
[9] Huang, Z.; Yang, Q.; Cao, J., Stochastic stability and bifurcation for the chronic state in Marchuk’s model with noise, Applied Mathematical Modelling, 35, 12, 5842-5855 (2011) · Zbl 1228.93086
[10] Hasegawa, H., Stochastic bifurcation in FitzHugh-Nagumo ensembles subjected to additive and/or multiplicative noises, Physica D: Nonlinear Phenomena, 237, 2, 137-155 (2008) · Zbl 1151.34047
[11] Hayase, Y.; Wehner, S.; Küppers, J.; Brand, H. R., External noise imposed on the reaction-diffusion system CO+\(O_2\) → \(CO_2\) on Ir(111) surfaces: experiment and theory, Physical Review E, 69, 2 (2004)
[12] Wehner, S.; Hoffmann, P.; Schmeißer, D.; Brand, H. R.; Küppers, J., Spatiotemporal patterns of external noise-induced transitions in a bistable reaction-diffusion system: photoelectron emission microscopy experiments and modeling, Physical Review Letters, 95, 3, 1-4 (2005)
[13] Hoffmann, P.; Wehner, S.; Schmeisser, D.; Brand, H. R.; Küppers, J., Noise-induced spatiotemporal patterns in a bistable reaction-diffusion system: photoelectron emission microscopy experiments and modeling of the CO oxidation reaction on Ir(111), Physical Review E, 73, 5 (2006)
[14] Bodega, P. S.; Alonso, S.; Rotermund, H. H., Effects of external global noise on the catalytic CO oxidation on Pt(110), Journal of Chemical Physics, 130, 8 (2009)
[15] Cisternas, J.; Escaff, D.; Descalzi, O.; Wehner, S., Stochastic model calculation for the carbon monoxide oxidation on iridium(111) surfaces, International Journal of Bifurcation and Chaos, 19, 10, 3461-3472 (2009) · Zbl 1182.80007
[16] Bär, M.; Zülicke, C.; Eiswirth, M.; Ertl, G., Theoretical modeling of spatiotemporal self-organization in a surface catalyzed reaction exhibiting bistable kinetics, The Journal of Chemical Physics, 96, 11, 8595-8604 (1992)
[17] Wehner, S.; Baumann, F.; Küppers, J., Kinetic hysteresis in the CO oxidation reaction on Ir(111) surfaces, Chemical Physics Letters, 370, 1-2, 126-131 (2003)
[18] Wehner, S.; Baumann, F.; Ruckdeschel, M.; Küppers, J., Kinetic phase transitions in the reaction CO+\(O→CO_2\) on Ir(111) surfaces, Journal of Chemical Physics, 119, 13, 6823-6831 (2003)
[19] Hale, J., Theory of Functional Differential Equations (1977), New York, NY, USA: Springer, New York, NY, USA
[20] Hale, J. K.; Verduyn Lunel, S. M., Introduction to Functional-Differential Equations, 99 (1993), New York, NY, USA: Springer, New York, NY, USA · Zbl 0787.34002
[21] Fofana, M. S., Aspects of stable and unstable machining by Hopf bifurcation, Applied Mathematical Modelling, 26, 10, 953-973 (2002) · Zbl 1025.34076
[22] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, 42 (1983), New York, NY, USA: Springer, New York, NY, USA · Zbl 0515.34001
[23] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y. H., Theory and Applications of Hopf Bifurcation. Theory and Applications of Hopf Bifurcation, London Mathematical Society Lecture Note Series, 41 (1981), Cambridge, UK: Cambridge University Press, Cambridge, UK · Zbl 0474.34002
[24] Campbell, S. A.; Bélair, J.; Ohira, T.; Milton, J., Limit cycles, tori, and complex dynamics in a second-order differential equation with delayed negative feedback, Journal of Dynamics and Differential Equations, 7, 1, 213-236 (1995) · Zbl 0816.34048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.