Jukić Bokun, Mirela On the rank of elliptic curves over \(\mathbb Q(\sqrt{-3})\) with torsion groups \(\mathbb Z/3\mathbb Z\times\mathbb Z/3\mathbb Z\) and \(\mathbb Z/3\mathbb Z\times \mathbb Z/6\mathbb Z\). (English) Zbl 1281.11056 Proc. Japan Acad., Ser. A 87, No. 5, 61-64 (2011). The author constructs elliptic curves over the field \(\mathbb Q(\sqrt{-3})\) with torsion group \(\mathbb Z/3\mathbb Z\times\mathbb Z/3\mathbb Z\) and ranks equal to 7 and an elliptic curve over the same field with torsion group \(\mathbb Z/3\mathbb Z\times \mathbb Z/6\mathbb Z\) and rank equal to 6. This is an improvement of results of F. P. Rabarison [Acta Arith. 144, No. 1, 17–52 (2010; Zbl 1228.11085)] who constructed elliptic curves with these torsion groups and ranks \(\geq 2\), \(\geq 3\), respectively. Reviewer: Olaf Ninnemann (Berlin) Cited in 3 Documents MSC: 11G05 Elliptic curves over global fields 14H52 Elliptic curves 11R11 Quadratic extensions Keywords:elliptic curve; torsion group; rank Citations:Zbl 1228.11085 Software:APECS; PARI/GP; ecdata × Cite Format Result Cite Review PDF Full Text: DOI References: [1] I. Connell, APECS, ftp://ftp.math.mcgill.ca/pub/apecs/ [2] E. Brier and C. Clavier, New Families of ECM Curves for Cunningham Numbers. In Proceedings of ANTS. 2010, 96-109. · Zbl 1260.11076 · doi:10.1007/978-3-642-14518-6_11 [3] J. E. Cremona, Algorithms for modular elliptic curves , second edition, Cambridge Univ. Press, Cambridge, 1997. · Zbl 0872.14041 [4] A. Dujella and M. Jukić Bokun, On the rank of elliptic curves over \(\mathbf{Q}(i)\) with torsion group \(\mathbf{Z}/4\mathbf{Z}\times\mathbf{Z}/4\mathbf{Z}\), Proc. Japan Acad. Ser. A Math. Sci. 86 (2010), no. 6, 93-96. · Zbl 1217.11058 · doi:10.3792/pjaa.86.93 [5] S. Kamienny, Torsion points on elliptic curves and \(q\)-coefficients of modular forms, Invent. Math. 109 (1992), no. 2, 221-229. · Zbl 0773.14016 · doi:10.1007/BF01232025 [6] M. A. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. 109 (1988), 125-149. · Zbl 0647.14020 [7] J.-F. Mestre, Formules explicites et minorations de conducteurs de variétés algébriques, Compositio Math. 58 (1986), no. 2, 209-232. · Zbl 0607.14012 [8] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129-162. · Zbl 0386.14009 · doi:10.1007/BF01390348 [9] K. Nagao, Construction of high-rank elliptic curves with a nontrivial torsion point, Math. Comp. 66 (1997), no. 217, 411-415. · Zbl 0854.11029 · doi:10.1090/S0025-5718-97-00779-5 [10] F. Najman, Torsion of elliptic curves over quadratic cyclotomic fields, Math J. Okayama Univ. 53 (2011), 75-82. · Zbl 1222.11076 [11] F. Najman, Complete classification of torsion of elliptic curves over quadratic cyclotomic fields, J. Number Theory 130 (2010), no. 9, 1964-1968. · Zbl 1200.11039 · doi:10.1016/j.jnt.2009.12.008 [12] PARI/GP, version 2.3.3, Bordeaux, 2008. http://pari.math.u-bordeaux.fr/. URL: [13] F. P. Rabarison, Structure de torsion des courbes elliptiques sur les corps quadratiques, Acta Arith. 144 (2010), no. 1, 17-52. · Zbl 1228.11085 · doi:10.4064/aa144-1-3 [14] U. Schneiders and H. G. Zimmer, The rank of elliptic curves upon quadratic extension, in Computational number theory (Debrecen, 1989) , 239-260, de Gruyter, Berlin. · Zbl 0743.14023 [15] M. Stoll, RATPOINTS. http://www.mathe2.uni-bayreuth.de/stoll/programs/. URL: This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.